《高等数学》电子课件(同济第六版)第八章 第4节空间曲线及其方程.ppt
文本预览下载声明
* 一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影 四、小结 * 空间曲线的一般方程 曲线上的点都满足方程,满足方程的点都在曲线上,不在曲线上的点不能同时满足两个方程. 空间曲线C可看作空间两曲面的交线. 特点: 一、空间曲线的一般方程 * 例1 方程组 表示怎样的曲线? 解 表示圆柱面, 表示平面, 交线为椭圆. * 例2 方程组 表示怎样的曲线? 解 上半球面, 圆柱面, 交线如图. * 空间曲线的参数方程 二、空间曲线的参数方程 * 动点从A点出发,经过t时间,运动到M点 螺旋线的参数方程 取时间t为参数, 解 * 螺旋线的参数方程还可以写为 螺旋线的重要性质: 上升的高度与转过的角度成正比. 即 上升的高度 螺距 * 三、空间曲线在坐标面上的投影 设空间曲线的一般方程: z * 如图:投影曲线的研究过程. 空间曲线 投影曲线 投影柱面 * 设空间曲线的一般方程 消去变量z后得: 曲线关于xoy 面 的投影柱面 空间曲线在xoy 面上的投影曲线 * 类似地:可定义空间曲线在其他坐标面上的投影 面上的投影曲线, 面上的投影曲线, 设空间曲线的一般方程: * 例4 求曲线 在坐标面上的投影. 解 (1)消去变量z后得 在 面上的投影为 * 所以在 面上的投影为线段. (3)同理在 面上的投影也为线段. (2)因为曲线在平面 上, * 截线方程为 解 如图, * * 补充: 空间立体或曲面在坐标面上的投影. 空间立体 曲面 * 例6 解 半球面和锥面的交线为 * 一个圆, * * 空间曲线的一般方程、参数方程. 四、小结 空间曲线在坐标面上的投影. * * 思考题 * 思考题解答 交线方程为 在 面上的投影为 * 练 习 题 * * * 练习题答案 * 当给定时,就得到曲线上的一个点,随着参数的变化可得到曲线上的全部点.
例3 如果空间一点在圆柱面上以角速度绕轴旋转,同时又以线速度 沿平行于 轴的正方向上升(其中、 都是常数),那么点构成的图形叫做螺旋线.试建立其参数方程.
在面的投影
求抛物面与平面
的截线在三个坐标面上的投影曲线方程.
(2)消去得投影
(3)消去得投影
(1)消去得投影
求椭圆抛物面与抛物柱面的交线关于面的投影柱面和在面上的投影曲线方程.
消去得投影柱面
填空题:
曲面与平面的交线是_____;
通过曲线,,且
母线平行于轴的柱面方程是____________;
曲线在
平面上的投影方程是_______________;
方程组在平面解析几何中表示______;
方程组在平面解析几何中表示_______
______,在空间解析几何中表示_______________;
、旋转抛物面()
在面的投影为__________,
在面的投影为____________,
在面上的投影为__________.
画出下列曲线在第一卦限的图形:
1、
2、
将曲线化为参数方程.
求螺旋线在三个坐标面上的投影曲线的直角坐标方程 .
求由上半球面,柱面及平面所围成的立体,在面和面上的投影 .
一、1、; 2、;
3、;
4、两直线的交点,两平面的交线;
5、椭圆与其一切线的交点,椭圆柱面与
其切平面的交线;
6、.
三、,.
四、,,.
五、.
显示全部