文档详情

中考数学复习第六章圆63与圆有关的计算课件.pptx

发布:2025-02-19约3.46千字共8页下载文档
文本预览下载声明

陕西考点解读

考点1与圆有关的计算

中考说明:会计算圆的弧长、扇形的面积。

nr

1.弧长:n°的圆心角所对的弧长l的计算公式为l=①。

n21180

扇形的面积公式:S扇=R②。

2.3602lR

其中n是扇形的圆心角的度数,R是扇形的半径,l是扇形的弧长。

1

3.圆锥的侧面积:S=l·2πr=③πrl。

其中l是圆锥的母线长2,r是圆锥的底面半径。

【特别提示】

圆中的面积计算常见的是求阴影部分的面积,常用的方法有:(1)利用规则图形面积

的和与差;(2)割补法;(3)等积变形法;(4)平移法;(5)旋转法。

陕西考点解读

【知识延伸】

圆内的拓展公式

1.相交弦定理

如下图,在⊙O中,弦AB与弦CD相交于点E,则AE·BE=CE·DE。

2.切割线定理

如下图,已知PA所在的直线为⊙O的切线,PBC为⊙O的割线,则PA2=PB·PC。

陕西考点解读

【提分必练】

1.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB,OD,若

∠BOD=∠BCD,则BD的长为(C)

3

A.B.πC.2D.3

π2ππ

【解析】∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°。∵∠BOD=2∠A,

∠BOD=∠BCD,∴2∠A+∠A=180°,解得∠A=60°,∴∠BOD=120°,∴弧

BD的长为1203。故选C。

2

180

陕西考点解读

2.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,

D,得到四边形ABCD。若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()

B

A.5πcm2B.10πcm2C.15πcm2D.20πcm2

【解析】∵AC与BD是⊙O的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴

四边形ABCD是矩形,∴S△ABO+S△CDO=S△AOD+S△BOC,∴S阴影=S扇形AOD+S扇形BOC=2S扇形AOD。

∵OA=OB,∴∠ABO=∠BAC=36°,∴∠AOD=72°,∴。

2

10

故选B。72

22

S阴影210cm

360

陕西考点

解读

3.如图,AB是圆锥的母线,BC为底面直径,已知BC=6

cm,圆锥的侧面积为15πcm2,则sin∠ABC的值为(C)

重难突破强化

重难点1扇形弧长的计算(重点)

例1一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么点

B从开始至结束所走过的路径的长度为(B)

【解析】由题意知,点B从开始至结束所走过的路径为BCB′和B′A′B″。

∵∠BCB′=∠B′A′B″=120°,∴点B从开始至结束所走过的路径的长度

12014

为。故选B。=

1803

重难突破强化

重难点2扇形面积的计算(重点)

例2(2018·湖北十堰中考)如图,在扇形AOB中,∠AOB=100°,

OA=12,C是OB的中点,CD⊥OB交AB于点D,以OC为半径

显示全部
相似文档