文档详情

2013年浙江中考数学第一轮复习课件(第六章圆第3讲和圆有关的计算).ppt

发布:2017-05-29约6.81千字共51页下载文档
文本预览下载声明
跟踪训练 答案:D 答案:A 答案:A 答案:B 答案:B 答案:C 答案:D 答案:B 答案:D 答案:6 浙江名师预测 考题类型展示 跟踪训练 基础知识梳理 浙江三年中考 按ESC退出 首页 浙江名师预测 考题类型展示 跟踪训练 基础知识梳理 浙江三年中考 首页 按ESC退出 浙江名师预测 考题类型展示 跟踪训练 基础知识梳理 浙江三年中考 首页 按ESC退出 浙江名师预测 考题类型展示 跟踪训练 基础知识梳理 浙江三年中考 首页 按ESC退出 浙江名师预测 考题类型展示 跟踪训练 基础知识梳理 浙江三年中考 首页 按ESC退出 数 学 2013年浙江中考第一轮复习 第3讲 和圆有关的计算 1.(2012·嘉兴)已知一个圆锥的底面半径为3 cm,母线长为10 cm,则这个圆锥的侧面积为(  ) A.15π cm2 B.30π cm2 C.60π cm2 D.3 cm2 答案:B 知识点一  弧长、扇形的面积 知识点二  圆锥的侧面积和全面积 知识点三  阴影部分的面积 类型一  弧长、扇形的面积 类型二   圆锥的侧面展开图 类型三   不规则图形面积的计算 1.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是(  ) A.1.5 B.2 C.3 D.6 答案:C 2.已知圆锥的底面半径为3 cm,母线长为5 cm,则圆锥的侧面积是(  ) A.20 cm2 B.20π cm2 C.15 cm2 D.15π cm2 答案:D 浙江名师预测 考题类型展示 跟踪训练 基础知识梳理 浙江三年中考 按ESC退出 首页 浙江名师预测 考题类型展示 跟踪训练 基础知识梳理 浙江三年中考 首页 按ESC退出 浙江名师预测 考题类型展示 跟踪训练 基础知识梳理 浙江三年中考 首页 按ESC退出 浙江名师预测 考题类型展示 跟踪训练 基础知识梳理 浙江三年中考 首页 按ESC退出 浙江名师预测 考题类型展示 跟踪训练 基础知识梳理 浙江三年中考 首页 按ESC退出 2.(2011·绍兴)一个圆锥的侧面展开图是半径为4,圆心角为90°的扇形,则此圆锥的底面半径为1. 3.(2012·舟山)如图,已知O的半径为2,弦AB半径OC,沿AB将弓形ACB翻折,使点C与圆心O重合,则月牙形(图中实线围成的部分)的面积是π+2. 4.(2012·义乌)如图,已知AB是O的直径,点C,D在O上,点E在O外,EAC=D=60°. (1)求ABC的度数; (2)求证:AE是O的切线; (3)当BC=4时,求劣弧的长. 解:(1)ABC与D都是所对的圆周角, ABC=D=60°. (2)AB是O的直径,ACB=90°,BAC=30°, BAE=BAC+EAC=30°+60°=90°, 即BAAE,AE是O的切线. (3)如图,连结OC. OB=OC,ABC=60°, OBC是等边三角形, OB=BC=4,BOC=60°, AOC=120°. ==π. 5.(2012·宁波)如图,在ABC中,BE是它的角平分线,C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F. (1)求证:AC是O的切线; (2)已知sin A=,O的半径为4,求图中阴影部分的面积. 解:(1)连结OE.OB=OE, OBE=OEB. ∵BE是ABC的角平分线, OBE=EBC, OEB=EBC, OE∥BC. ∵∠C=90°, AEO=C=90°, AC是O的切线. (2)连结OF. sin A=,A=30°. O的半径为4,AO=2OE=8, AE=4,AOE=60°,AB=12, BC=AB=6,AC=6, CE=AC-AE=2. OB=OF,ABC=60°, OBF是正三角形. FOB=60°,CF=6-4=2,EOF=60°. S梯形OECF=×(2+4)×2=6. S扇形EOF==π. S阴影部分=S梯形OECF-S扇形EOF=6-π. 1.如果弧长为l,圆心角为n°,圆的半径为r,那么弧长的计算公式为:l=. 2.由组成圆心角的两条半径和圆心角所对弧围成的图形叫做扇形.若扇形的圆心角为n°,所在圆半径为r,弧长为l,面积为S,则S=,或S=lr. 注:公式中的n表示1°的圆心角的倍数,所以不带单位. 圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥的底面周长c,半径等于圆锥的母线长l.若圆锥的底面半径为r,这个扇形的圆心角为α,则α=·360°,S圆锥侧=cl=πrl,S圆锥全= πrl+πr2. 1.规则图形
显示全部
相似文档