文档详情

高中数学2_3_1双曲线及其标准方程.ppt

发布:2017-04-25约2.26千字共26页下载文档
文本预览下载声明
了解双曲线的定义、几何图形和标准方程的推导过程. 会利用双曲线的定义和标准方程解决简单的应用问题. ;双曲线的定义 把平面内与两个定点F1、F2的距离的___________等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这_________叫做双曲线的焦点, _______________叫做双曲线的焦距. 试一试:在双曲线的定义中,必须要求“常数小于|F1F2|”,那么“常数等于|F1F2|”,“常数大于|F1F2|”或 “常数为0”时,动点的轨迹是什么? ;提示 (1)若“常数等于|F1F2|”时,此时动点的轨迹是以F1,F2为端点的两条射线F1A,F2B(包括端点),如图所示. ;双曲线的标准方程 ;提示 如果x2项的系数是正的,那么焦点在x轴上,如果y2项的系数是正的,那么焦点在y轴上.对于双曲线,a不一定大于b,因此,不能像椭圆那样比较分母的大小来判定焦点在哪一个坐标轴上. ;对双曲线定义的理解 (1)把定常数记为2a,当2a|F1F2|时,其轨迹是双曲线;当2a=|F1F2|时,其轨迹是以F1、F2为端点的两条射线(包括端点);当2a|F1F2|时,其轨迹不存在. (2)距离的差要加绝对值,否则只为双曲线的一支.若F1、F2表示双曲线的左、右焦点,且点P满足|PF1|-|PF2|=2a,则点P在右支上;若点P满足|PF2|-|PF1|=2a,则点P在左支上. ;(4)理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距离.” 双曲线的标准方程 (1)只有当双曲线的两焦点F1、F2在坐标轴上,并且线段F1F2的垂直平分线也是坐标轴时得到的方程才是双曲线的标准方程. (2)标准方程中的两个参数a和b,确定了双曲线的形状和大小,是双曲线的定形条件,这里b2=c2-a2,与椭圆中b2=a2-c2相区别,且椭圆中ab0,而双曲线中a、b大小则不确定. ;(3)焦点F1、F2的位置,是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x2项的系数为正,则焦点在x轴上;若y2项的系数为正,那么焦点在y轴上. (4)用待定系数法求双曲线的标准方程时,如不能确定焦点的位置,可设双曲线的标准方程为Ax2+By2=1(AB0)或进行分类讨论. ;题型一 求双曲线的标准方程 ;规律方法 求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程的形式,然后用待定系数法求出a,b的值.若焦点位置不确定,可按焦点在x轴和y轴上两种情况讨论求解,此方法思路清晰,但过程复杂,注意到双曲线过两定点,可设其方程为mx2+ny2=1(mn0),通过解方程组即可确定m、n,避免了讨论,实为一种好方法. ; 求适合下列条件的双曲线的标准方程: (1)a=3,c=4,焦点在x轴上; (2)焦点为(0,-6),(0,6),经过点A(-5,6). 解 (1)由题设知,a=3,c=4, 由c2=a2+b2得,b2=c2-a2=42-32=7. ;(1)若双曲线上一点M到它的一个焦点的距离等于16,求点M到另一个焦点的距离; (2)若P是双曲线左支上的点,且|PF1|·|PF2|=32,试求△F1PF2的面积. ;(1)由双曲线的定义得||MF1|-|MF2||=2a=6,又双曲线上一点M到它的一个焦点的距离等于16,假设点M到另一个焦点的距离等于x,则|16-x|=6,解得x=10或x=22. 故点M到另一个焦点的距离为6 或22. (2)将||PF2|-|PF1||=2a=6,两边平方得 |PF1|2+|PF2|2-2|PF1|·|PF2|=36, ∴|PF1|2+|PF2|2=36+2|PF1|·|PF2| =36+2×32=100. 在△F1PF2中,由余弦定理得 ;规律方法 (1)求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF1|-|PF2||=2a求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c-a). (2)在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件||PF1|-|PF2||=2a的应用;其次是要利用余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用. ;由定义和余弦定理得|PF1|-|PF2|=±6, |F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°, 所以102=(|PF1|-|PF2|)2+|PF1|·|PF2|, 所以|PF1|·|PF2|=64, ;题型三 与双曲线有关的轨迹问题;【题后反思】 求解与双曲线有关的点的轨迹问题,常见的方法有两种:(1)列出等量关系,化简得到方程;
显示全部
相似文档