文档详情

《方程的导出和定解条件10课时.doc

发布:2017-01-10约1.44千字共5页下载文档
文本预览下载声明
数学物理方程 (一学期课程, 基地班、计算数学与应用软件班周课时4,师范班选修周课时3) 方程的导出和定解条件:(10课时) 弦振动方程、热传导方程、**连续性方程、位势方程的导出。(8课时) 定解问题的适定性。(2课时) 波动方程:(22课时) 一阶线性方程解法。(2课时) 一维初值问题(问题简化、解表示、能量不等式、半无界问题)。(8课时) **高维初值问题(解表示、特征锥与Huygens原理)。(4课时) 混合问题(分离变量法、驻波与共振、能量不等式、*广义解)。(8课时) 热传导方程:(22课时) 初值问题(Fourier变换、Poisson公式、广义函数、基本解、半无界问题)。(12课时) 混合问题。(2课时) *极值原理(弱极值原理、热导方程各定解问题最大模估计)。(8课时) 位势方程:(12课时) 解与Green函数,圆上的Poisson公式。(6课时) *弱极值原理,*最大模估计。(6课时) 二阶线性偏微分方程分类:(6课时) 1、分类。(2课时) 2、二个变量方程的化简。(4课时) 教材或参考书: 1数学物理方程讲义(第二版),姜礼尚等,高等教学出版社,1996 2数学物理方程方法导引,陈恕行、秦铁虎,复旦大学出版社,2004 附注: 1、仅对基地班所讲内容用“**”表示,仅对基地班及应用班讲述内容用“*”表示。 2、计应专业:第二章:高维初值问题解表示只作介绍。 师范专业选修:第三、四章:极值原理、最大模估只作介绍。 样稿: 抽 象 代 数 (一学期课程, 周课时4) 群论(32课时) 群的定义,单位元和逆元的性质,变换群和置换群,Klein四元群。 (5课时) 子群及判别条件,子集生成的子群,群的中心。(5课时) 循环群,循环群的子群,Ζ和Ζn。(6课时) 元素的阶,有限循环群的元素的阶。(4课时) 等价关系与集合分类,陪集。(4课时) 正规子群,商群。(3课时) 群的同构,Cayley定理。(3课时) 群的同态,子群和正规子群在同态作用下的性质,同态基本定理。(4课时) 有限群,Lagrange定理。(2课时) 环论(28课时) 环的定义及元素的简单性质,环上的多项式环。(3课时) 理想,子集生成的理想,商环。(3课时) 环的同构和同态,同态基本定理,控补定理。(4课时) 交换环, 域,素理想和整环,极大理想和域,极大理想的存在性,整环的 特征。(4课时) 分式域。(2课时) 既约元,素元,主理想整环,欧几里得环,高斯整数环,唯一分解整环, 欧几里得环是主理想整环,主理想整环是唯一分解整环,最大公因子。 (10课时) 唯一分解整环上的多项式环也是唯一分解整环。(2课时) 域论(10课时) 素域 ,素子域,集合在子域上生成的域。(1课时) 单扩域,代数元,超越元,极小多项式,单扩域的刻划。(4课时) 代数扩域,有限扩域一定是代数扩域。(1课时) 分裂域 ,分裂域的存在性和唯一性。(3课时) 有限域,有限域是分裂域,有限域其素子域的单扩域。(1课时) 四*. 模介绍(2课时) 模的定义,子模和商模,模的同态基本定理。 教材或参考书: 刘绍学编:近世代数基础 吴品三编:近世代数 张禾瑞编:近世代数 另注:长学期或基地班所讲内容用“*”表示
显示全部
相似文档