文档详情

苏教版高必修立体几何复习.doc

发布:2017-04-05约2.9千字共6页下载文档
文本预览下载声明
1. 多面体的结构特征 对于多面体的结构要从其反应的几何体的本质去把握,棱柱、棱锥、棱台是不同的多面体,但它们也有联系,棱柱可以看成是上、下底面全等的棱台;棱锥又可以看作是一底面缩为一点的棱台,因此它们的侧面积和体积公式可分别统一为一个公式。 2. 旋转体的结构特征 旋转体是一个平面封闭图形绕一个轴旋转生成的,一定要弄清圆柱、圆锥、圆台、球分别是由哪一种平面图形旋转生成的,从而可掌握旋转体中各元素的关系,也就掌握了它们各自的性质。 3. 表面积与体积的计算 有关柱、锥、台、球的面积和体积的计算,应以公式法为基础,充分利用几何体中的直角三角形、直角梯形求有关的几何元素。 4. 三视图与直观图的画法 三视图和直观图是空间几何体的不同的表现形式,空间几何体的三视图可以使我们很好地把握空间几何体的性质.由空间几何体可以画出它的三视图,同样由三视图可以想象出空间几何体的形状,两者之间可以相互转化。 5. 直线和平面平行的判定方法 (1)定义:; (2)判定定理:; (3)线面垂直的性质:; (4)面面平行的性质:。 6. 线线平行的判定方法 (1)定义:同一平面内没有公共点的两条直线是平行直线; (2)公理4:; (3)平面几何中判定两直线平行的方法; (4)线面平行的性质:; (5)线面垂直的性质:; (6)面面平行的性质:。 7. 证明线面垂直的方法 (1)线面垂直的定义:a与内任何直线垂直; (2)判定定理1:; (3)判定定理2:; (4)面面平行的性质:; (5)面面垂直的性质:。 8. 证明线线垂直的方法 (1)定义:两条直线所成的角为90°; (2)平面几何中证明线线垂直的方法; (3)线面垂直的性质:; (4)线面垂直的性质:。 9. 判定两个平面平行的方法 (1)依定义采用反证法; (2)利用判定定理: ; (3)垂直于同一条直线的两个平面平行; ; (4)平行于同一平面的两个平面平行; 。 10. 平行关系的转化 由上面的框图易知三者之间可以进行任意转化,因此要判定某一平行的过程就是从一平行出发不断转化的过程,在解题时把握这一点,灵活确定转化的思路和方向。 11. 判定两个平面垂直的方法 (1)利用定义:两个平面相交,所成的二面角是直二面角。 (2)判定定理: 12. 垂直关系的转化 在证明两平面垂直时一般先从现有直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直。故熟练掌握“线线垂直”“面面垂直”间的转化条件是解决这类问题的关键。 ◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。 ◆公理2:过不在一条直线上的三点,有且只有一个平面。 ◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 ◆公理4:平行于同一条直线的两条直线平行。 ◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。 ②以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。 通过直观感知、操作确认,归纳出以下判定定理。 ◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 ◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 ◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。 ◆一个平面过另一个平面的垂线,则两个平面垂直。 通过直观感知、操作确认,归纳出以下性质定理,并加以证明。 ◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。 ◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。 ◆垂直于同一个平面的两条直线平行。 ◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 ③能运用已获得的结论证明一些空间位置关系的简单命题。 【典型例题】 例1. 图中所示的是一个零件的直观图,画出这个几何体的三视图。 画简单组合体的三视图应注意两个问题:(1)要确定主视、俯视、左视的方向,同一物体放置位置的不同,所画的三视图可能不同。(2)要明确简单组合体是由哪几个基本几何体生成的,并注意它们的生成方式,
显示全部
相似文档