高等数学(经济类)第5版课件:微分中值定理与导数的应用.pptx
中值定理应用研究函数性质及曲线性态利用导数解决实际问题罗尔中值定理拉格朗日中值定理柯西中值定理泰勒公式(第三节)推广微分中值定理与导数的应用
一、罗尔(Rolle)定理第一节二、拉格朗日中值定理三、柯西(Cauchy)中值定理中值定理
费马(fermat)引理一、罗尔(Rolle)定理且存在证:设则费马证毕
罗尔(Rolle)定理满足:(1)在区间[a,b]上连续(2)在区间(a,b)内可导(3)f(a)=f(b)使证:故在[a,b]上取得最大值M和最小值m.若M=m,则因此在(a,b)内至少存在一点
若Mm,则M和m中至少有一个与端点值不等,不妨设则至少存在一点使注意:1)定理条件条件不全具备,结论不一定成立.例如,则由费马引理得
使2)定理条件只是充分的.本定理可推广为在(a,b)内可导,且在(a,b)内至少存在一点证明提示:设证F(x)在[a,b]上满足罗尔定理.
例1.证明方程有且仅有一个小于1的正实根.证:1)存在性.则在[0,1]连续,且由介值定理知存在使即方程有小于1的正根2)唯一性.假设另有为端点的区间满足罗尔定理条件,至少存在一点但矛盾,故假设不真!设
二、拉格朗日中值定理(1)在区间[a,b]上连续满足:(2)在区间(a,b)内可导至少存在一点使思路:利用逆向思维找出一个满足罗尔定理条件的函数作辅助函数显然,在[a,b]上连续,在(a,b)内可导,且证:问题转化为证由罗尔定理知至少存在一点即定理结论成立.拉氏证毕
拉格朗日中值定理的有限增量形式:推论:若函数在区间I上满足则在I上必为常数.证:在I上任取两点日中值公式,得由的任意性知,在I上为常数.令则
例2.证明等式证:设由推论可知(常数)令x=0,得又故所证等式在定义域上成立.自证:经验:欲证时只需证在I上
例3.证明不等式证:设中值定理条件,即因为故因此应有
三、柯西(Cauchy)中值定理分析:及(1)在闭区间[a,b]上连续(2)在开区间(a,b)内可导(3)在开区间(a,b)内至少存在一点使满足:要证柯西
证:作辅助函数且使即由罗尔定理知,至少存在一点思考:柯西定理的下述证法对吗?两个?不一定相同错!上面两式相比即得结论.
柯西定理的几何意义:注意:弦的斜率切线斜率
例4.设至少存在一点使证:结论可变形为设则在[0,1]上满足柯西中值定理条件,因此在(0,1)内至少存在一点?,使即证明
例5.试证至少存在一点使证:法1用柯西中值定理.则f(x),F(x)在[1,e]上满足柯西中值定理条件,令因此即分析:
例5.试证至少存在一点使法2令则f(x)在[1,e]上满足罗尔中值定理条件,使因此存在
内容小结1.微分中值定理的条件、结论及关系罗尔定理拉格朗日中值定理柯西中值定理2.微分中值定理的应用(1)证明恒等式(2)证明不等式(3)证明有关中值问题的结论关键:利用逆向思维设辅助函数费马引理
思考与练习1.填空题1)函数在区间[1,2]上满足拉格朗日定理条件,则中值2)设有个根,它们分别在区间上.方程
2.设且在内可导,证明至少存在一点使提示:由结论可知,只需证即验证在上满足罗尔定理条件.设
3.若可导,试证在其两个零点间一定有的零点.提示:设欲证:使只要证亦即作辅助函数验证在上满足罗尔定理条件.
4.思考:在即当时问是否可由此得出不能!因为是依赖于x