文档详情

菱形的性质及其判定.doc

发布:2017-04-06约5.48千字共13页下载文档
文本预览下载声明
乐恩特教育个性化教学辅导教案 校区:百花 授课教师 王宁波 日期 2014.8 时间 8:00~10:00 学 生 李延泽 年级 初三 科目 数学 课 题 菱形的性质及其判定 教学目标 要 求 教学重难点 分 析 重点是菱形的性质和判定定理。菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。 难点是菱形性质的灵活应用。由于菱形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程?中应给予足够重视 教 学 过 程 知识回顾 1.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2.菱形的性质 菱形是特殊的平行四边形,它具有平行四边形的所有性质,还具有自己独特的性质: ① 边的性质:对边平行且四边相等. ② 角的性质:邻角互补,对角相等. ③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④ 对称性:菱形是中心对称图形,也是轴对称图形. 菱形的面积等于底乘以高,等于对角线乘积的一半. 点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定 判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形. 讲授新课 1、 叫菱形 2、菱形的性质 1)边 2)角 3)对角线 4)对称性 1、探究菱形的面积计算方法: 练一练: 1、菱形的周长为12 cm,相邻两角之比为5∶1,那么菱形对边间的距离是( ) A.6 cm B.1.5 cm C.3 cm D.0.75 cm 2.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于( )A.75° B.60° C.45° D.30° 3、菱形的边长是2 cm,一条对角线的长是2 cm,则另一条对角线的长是( ) A.4 cm B. cm C.2 cm D.2 cm ? 精讲精练 例1、如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH. 变式:菱形ABCD的周长为20 cm,两条对角线的比为3∶4,求菱形的面积. 例2:(09贵阳)如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E,连接EB。(1)求证:;(2)若,试问:P点运动到什么位置时,的面积等于菱形ABCD面积的?为什么? 例3:如图,在菱形ABCD中,AB=4a,E在BC上,BE=2a,,P点在BD上,求PE+PC的最小值。 三、用中学习 1.菱形具有而一般平行四边形不具有的性质是( ) A.对角相等 B.对边相等 C.对角线互相垂直 D.对角线相等 2.菱形ABCD中,AC、BD相交于O点,若∠OBC=∠BAC,则菱形的四个内角的度数为_______. 3、.若菱形的两条对角线的比为3∶4,且周长为20 cm,则它的一组对边的距离等于__________ cm,它的面积等于________ cm2. 4.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是( ) A.168 cm2 B.336 cm2 C.672 cm2 D.84 cm2 5.菱形的周长为16,两邻角度数的比为1∶2,此菱形的面积为( ) A.4 B.8 C.10 D.12 6.下列语句中,错误的是( ) A.菱形是轴对称图形,它有两条对称轴 B.菱形的两组对边可以通
显示全部
相似文档