《2016届江苏省高考数学(文科)冲刺模拟试卷11》.doc
文本预览下载声明
2010届江苏省高考数学(文科)冲刺模拟试题11
一、填空题:本大题共14小题,每小题5分,共70分。请把答案填写在答题卡相应的位置上.
1、若集合,满足,则实数a= .
2、函数的最小正周期是 .
3、下图是2009年举行的某次民族运动会上,七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为 .
4、某算法的伪代码如右:则输出的结果是 .
5、6、已知数列—1,a1,a2,—4成等差数列,—1,b1,b2,b3,—4成等比数列,则的值为_____________.
7、已知椭圆的中心在原点、焦点在轴上,若其离心率是,焦距是8,则该椭圆的方程为 .
8、已知抛物线y2=4x的准线与双曲线交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率是 _____________.
9、函数在区间上的最大值是 .
10、在△ABC中,已知向量,若△ABC的面积是,则BC边的长是 .
11、设,若0ab,且f(a)=f(b),则ab的取值范围是 .
12、抛掷一颗骰子的点数为a,得到函数,则“ 在[0,4]上至少有5个零点”的概率是 .
13、对于定义在R上的函数,有下述命题:
①若是奇函数,则的图象关于点A(1,0)对称;
②若函数的图象关于直线对称,则为偶函数;
③若对,有的周期为2;
④函数的图象关于直线对称. 其中正确命题的序号是 .
14、已知l1和l2是平面内互相垂直的两条直线,它们的交点为A,动点B、C分别在l1和l2上,且,过A、B、C三点的动圆所形成的区域的面积为 .
二、解答题:本大题共6小题,共90分。请把答案填写在答题卡相应的位置上.
15、(本小题满分14分)
在△ABC中,角A的对边长等于2,向量m=,向量n=.
(1)求m·n取得最大值时的角A的大小;
(2)在(1)的条件下,求△ABC面积的最大值.
16、(本小题满分14分)
如图,已知三棱锥A—BPC中,AP⊥PC, AC⊥BC,
M为AB中点,D为PB中点, 且△PMB为正三角形。
(1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱锥D—BCM的体积。
17、(本小题满分14分)
已知以点P为圆心的圆过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C、D,且|CD|=,
(1)求直线CD的方程;
(2)求圆P的方程;
(3)设点Q在圆P上,试探究使△QAB的面积为8的点Q共有几个?证明你的结论.
18. (本小题满分16分)如图,设椭圆的右顶点与上顶点分别为A、B,以A为圆心,OA为半径的圆与以B为圆心,OB为半径的圆相交于点O、P.
(1) 若点P在直线上,求椭圆的离心率;
(2) 在(1)的条件下,设M是椭圆上的一动点,且点N(0,1)到椭圆上点的最近距离为3,求椭圆的方程.
19、(本题满足16分)
水土流失是我国西部大开发中最突出的问题,全国9100万亩坡度为以上的坡耕地需退耕还林,其中西部占70%,2002年国家确定在西部地区退耕还林面积为515万亩,以后每年退耕土地面积递增12%.
⑴试问,从2002年起到哪一年西部地区基本上解决退耕还林问题?
⑵为支持退耕还林工作,国家财政补助农民每亩300斤粮食,每斤粮食按0.7元计算,并且每亩退耕地每年补助20元,试问到西部地区基本解决退耕还林问题时,国家财政共需支付约多少亿元?
20、(本小题满分16分)
已知函数,在区间上有最大值4,最小值1,设.
(Ⅰ)求的值;
(Ⅱ)不等式在上恒成立,求实数的范围;
(Ⅲ)方程有三个不同的实数解,求实数的范围.
一、填空题:本大题共14小题,每小题5分,共70分。请把答案填写在答题卡相应的位置上.
1、 2 .2、 π .3、, 4、9 . 5、.-36、___.7、 .8、.9、 10、.11、.(0,2)12、 .13、:① ② ③14、18 .
二、解答题:本大题共6小题,共90分。请把答案填写在答题卡相应的位置上.
15.解:(1)m·n=2-. ……………3分
因为 A+B+C,所以B+C-A,
于是m·n=+cosA=-2=-2.………5分
因为,所以当且仅当=,即A=时,m·n取得最大值.
故m·n取得最大值时的角A=. ……………………7分
(2)设角、B、C所对的边长分别为
显示全部