立体几何第八讲空间距离练习题(含答案).doc
文本预览下载声明
(三)距离
一.选择题
1.如图长方体中,AB=AD=2,CC1=,则二面角
C1—BD—C的大小为( )
(A)300 (B)450 (C)600 (D)900
2.在正三棱柱ABC-A1B1C1中,若AB=2,A A1=1,则点A到平面A1BC的距离为( )
A. B. C. D.
中 ,,,为的中点,则直线与平面的距离为
(A) (B) (C) (D)
二.填空题
4.如图,正方体的棱长为1,C、D分别是两条棱的中点, A、B、M是顶点,那么点M到截面ABCD的距离是 . 已知边长为的正三角形ABC中,E、F分别为BC和AC的中点,PA⊥面ABC,且PA=2,设平面过PF且与AE平行,则AE与平面间的距离为 .
如图四棱锥P—ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上,且PG=4,,BG⊥GC,GB=GC=2,E是BC的中点.
(1)求异面直线GE与PC所成的角的余弦值;
(2)求点D到平面PBG的距离;
(3)若F点是棱PC上一点,且DF⊥GC,求的值.
的所有棱长都为,为中点.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
四、空间、角
1.将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD中点,则的大小)
A. B. C. D.
4, 5. D
三.简答题
6,解析:(1)以G点为原点,为x轴、y轴、z轴建立空间直角坐标系,则B(2,0,0),C(0,2,0),P(0,0,4),故E(1,1,0),=(1,1,0), =(0,2,4)。,
∴GE与PC所成的余弦值为.
(2)平面PBG的单位法向量n=(0,±1,0) ∵,
∴点D到平面PBG的距离为n |=.
(3)设F(0,y,z),则。
∵,∴,
即,
∴ , 又,即(0,,z-4)=λ(0,2,-4), ∴z=1,
故F(0,,1) ,,∴。
中点,连结.
为正三角形,.
正三棱柱中,平面平面,
平面.
连结,在正方形中,分别为
的中点, , .
在正方形中,, 平面.
(Ⅱ)设与交于点,在平面中,作于,连结,由(Ⅰ)得平面.
, 为二面角的平面角.
在中,由等面积法可求得,
又, .
所以二面角的大小为.
(Ⅲ)中,,.
在正三棱柱中,到平面的距离为.
设点到平面的距离为.
由,得,
.
点到平面的距离为.
空间角
1,D
A
B
C
D
A1
B1
C1
D1
A
B
M
D
C
P
A
G
B
C
D
F
E
P
A
G
B
C
D
F
E
A
B
C
D
O
F
显示全部