数学:第二十四章圆复习教案(.doc
文本预览下载声明
第二十四章 圆(小结与复习)
【学习目标】
1、了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.
2、探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.
3、进一步认识和理解正多边形和圆的关系和正多边的有关计算.
4、熟练掌握弧长和扇形面积公式及其它们的应用;理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.
【学习过程】
自主学习:
1、在同圆或等圆中的弧、弦、圆心角、有什么关系?一条弧所对的圆周角和它所对的圆心角有什么关系?
2、垂径定理的内容是什么?推论是什么?
3、点与圆有怎样的位置关系?直线和圆呢?圆和圆呢?怎样判断这些位置关系?请你举出这些位置关系的实例?
4、圆的切线有什么性质?如何判断一条直线是圆的切线?
5、正多边形和圆有什么关系?你能用正多边形和等分圆周设计一些图案吗?
6、举例说明如何计算弧长、扇形面积、圆锥的侧面积和全面积?
典型例题:
例1:如图,P是⊙O外一点,PAB、PCD分别与⊙O相交于A、B、C、D.
(1)PO平分∠BPD;(2)AB=CD;(3)OE⊥CD,OF⊥AB;(4)OE=OF.
从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明,与同伴交流.
例2:如图,AB是O的弦,交AB于点C,过点B的直线交OC的延长线于点E,当时,直线BE与O有怎样的位置关系?并证明你的结论.
如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BC,则圆中阴影部分的面积为( )A. B. C.2 D.4如在Rt△ABC中,C=90°,AC=1,BC=2.以边所直线为轴,把△A旋转一周得到的几何体的侧积是 A. D.2
巩固练习:
1、教材130页复习题24第1题。(直接做在教材上)
2、教材130页复习题24第2题。
3、教材130页复习题24第6题。
总结反思:
通过堂上练习等连贯性的训练,既可以巩固基础知识,又可以把学生学习情况的信息反馈,这样可以了解学生的学习动态。另一方面,学生又可以从做题中了解到自己的学习情况,知道哪些是识的、哪些是不会的。
复习旧知识,而且可以从中找到哪一种是最基本、最典型的方法,哪一种是最简便的方法。使学生掌握解题的“通性通法”。同时,也使学生知道不同对象不同对待,要针对各种题型不同的特点,采用特定的解法。
- 3 -
- 3 -
显示全部