文档详情

二次函数专题训练7最值问题.doc

发布:2016-11-27约3.74千字共6页下载文档
文本预览下载声明
二次函数专题训练7------最值问题 二次函数是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量取任意实数时的最值情况(当时,函数在处取得最小值,无最大值;当时,函数在处取得最大值,无最小值. 本节我们将在这个基础上继续学习当自变量在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 二次函数求最值(一般范围类) 例1.当时,求函数的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,,、的值.解:作出函数的图象.时,,时,. 例2.当时,求函数的最大值和最小值. 解:作出函数的图象.时,,时,.的给定范围内,.,.,的范围的图象形状各异.: 例3.当时,求函数的取值范围. 解:作出函数在内的图象. 可以看出:当时,,无最大值. 所以,当时,函数的取值范围是. 例4.当时,求函数的最小值(其中为常数). 分析:由于所给的范围随着的变化而变化,所以需要比较对称轴与其范围的相对位置. 解:函数的对称轴为.画出其草图. (1) 当对称轴在所给范围左侧.即时: 当时,; (2) 当对称轴在所给范围之间.即时: 当时,; (3) 当对称轴在所给范围右侧.即时: 当时,. 综上所述: 在实际生活中,我们也会遇到一些与二次函数有关的问题: 二次函数求最值(经济类问题) 例1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数(台)与补贴款额(元)之间大致满足如图①所示的一次函数关系.随着补贴款额的不断增大,销售量也不断增加,但每台彩电的收益(元)会相应降低且与之间也大致满足如图②所示的一次函数关系. (1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元? (2)在政府补贴政策实施后,分别求出该商场销售彩电台数和每台家电的收益与政府补贴款额之间的函数关系式; (3)要使该商场销售彩电的总收益(元)最大,政府应将每台补贴款额定为多少?并求出总收益的最大值. 分析:(1)政府未出台补贴措施前,商场销售彩电台数为800台,每台彩电的收益为200元;(2)利用两个图像中提供的点的坐标求各自的解析式;(3)商场销售彩电的总收益=商场销售彩电台数×每台家电的收益,将(2)中的关系式代入得到二次函数,再求二次函数的最大值. 解:(1)该商场销售家电的总收益为(元); (2)依题意可设,,有,,解得.所以,. (3),政府应将每台补贴款额定为100元,总收益有最大值,其最大值为元. 说明:本题中有两个函数图像,在解题时要结合起来思考,不可顾此失彼. 例2.凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去. (1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与x之间的函数关系式. (2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由. 分析:(1)提价后每间包房的收入=原每间包房收包房费+每间包房收包房提高费,包房减少数=每间包房收包房提高费数量的一半;(2)酒店老板每天晚餐包房总收入=提价后每间包房的收入×每天包房租出的数量,得到二次函数后再求y取得最大值时x的值. 解:(1),; (2)y,因为提价前包房费总收入为100×100=10000,当x=50时,可获最大包房收入11250元,因为1125010000又因为每次提价为20元,所以每间包房晚餐应提高40元或60元. 说明:本题的答案有两个,但从“投资少而利润大”的角度来看,因尽量少租出包房,所以每间包房晚餐应提高60元应该更好. 例3.某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价(元)与销售月份(月)满足关系式=,而其每千克成本(元)与销售月份(月)满足的函数关系如图所示. (1)试确定的值; (2)求出这种水产品每千克的利润(元)与销售月份(月)之间的函数关系式; (3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少? 分析:(1)将点(3,25),(4,24)代入求b、c的值;(2)y=-;(3)将(2)中的二次函数配方为顶点式,再利用二次
显示全部
相似文档