文档详情

创新设计2017版高考数学(江苏专用文科)一轮复习课件: 专题探究课六.ppt

发布:2018-12-25约1.42千字共37页下载文档
文本预览下载声明
(1)求实数a,b的值; (2)当直线MN的斜率为1时,若椭圆上恰有两个点P1,P2使得△P1MN和△P2MN的面积为S,求S的取值范围; (3)求证:点G在一条定直线上. 高考导航 直线的概念与直线方程是解析几何的基础,在高考中与直线相关的考题较多,但单独命题不多,它渗透到解析几何的各个部分,重视斜率、直线方程的应用等基础知识在圆、圆锥曲线中的综合应用.圆的方程、直线与圆的位置关系是高考考查的热点,主要考查圆的方程、弦长、面积的求法,并常与圆的几何性质交汇.圆锥曲线是解析几何的核心部 分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主,注重“算理”的积累和表征,试题从不同的角度对问题进行表征,体现了对解析几何“多考一点想,少考一点算”的命题特点,问题在第(2)问或第(3)问中都伴有较为复杂的运算,要求有较强的运算求解能力. 热点一 直线与圆的交汇问题 直线与圆的位置关系是高考考查的热点,主要考查直线与圆的相交、相切、相离的判定与应用,以及弦长、面积的求法等,并常与圆的几何性质交汇,要求学生有较强的运算求解能力. 【例1】 (2015·南京师大附中模拟)已知圆的圆心是抛物线y2=-4x的焦点,且直线4x-3y-6=0与圆相切,则圆的标准方程为________. 答案 (x+1)2+y2=4 探究提高 与圆有关的综合问题,既可以用代数法求解,用到方程与函数思想,同时圆有很多几何性质,注意分类讨论、数形结合思想,充分利用圆的几何性质求解,往往会事半功倍. 【训练1】 (2015·泰州、连云港模拟)在平面直角坐标系xOy中,圆C的方程为x2+y2-4x=0.若直线y=k(x+1)上存在一点P,使过P所作的圆的两条切线相互垂直,则实数k的取值范围是________. 热点二 圆锥曲线中的定点、定值问题 定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题. (1)求椭圆C的方程; (2)设椭圆C的左、右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一交点为M,直线PB与椭圆的另一交点为N.求证:直线MN经过一定点. 探究提高 (1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. (2)如果要解决的问题是一个定点问题,而题设条件又没有给出这个定点,那么,我们可以这样思考:由于这个定点对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定点,明确解决问题的目标,然后进行推理探究,这种先根据特殊情况确定定点,再进行一般性证明的方法就是由特殊到一般的方法. (1)求椭圆的方程; (2)求证:直线AC,BD的斜率之和为定值. 热点三 圆锥曲线中的最值、范围问题 圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题. 探究提高 圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.
显示全部
相似文档