文档详情

平行四边形矩形菱形正方形梯形.ppt

发布:2025-02-26约6.14千字共67页下载文档
文本预览下载声明

第26讲┃归类示例第26讲┃归类示例第26讲┃归类示例?类型之三正方形的性质及判定的应用例3[2012·黄冈]如图26-4,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M.求证:AM⊥DF.[解析]根据DE=CF,可得出OE=OF,继而证明△AOE≌△DOF,得出∠OAE=∠ODF,然后利用等角代换可得出∠DME=90°,即可得出结论.命题角度:1.正方形的性质的应用;2.正方形的判定.图26-4第26讲┃归类示例第26讲┃归类示例正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,因此正方形具有这些图形的所有性质;正方形的判定方法有两条道路:(1)先判定四边形是矩形,再判定这个矩形是菱形;(2)先判定四边形是菱形,再判定这个菱形是正方形.第26讲┃归类示例?类型之四特殊平行四边形的综合应用例4[2012·娄底]如图26-4,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.命题角度:1.矩形、菱形、正方形的性质的综合应用;2.矩形、菱形、正方形的关系转化.图26-4第26讲┃归类示例第26讲┃回归教材中点四边形回归教材教材母题江苏科技版八上P102例1如图26-6,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.四边形EFGH是平行四边形吗?为什么?图26-6第26讲┃回归教材解:四边形EFGH是平行四边形.连接AC.在△ABC中,因为E、F分别是AB、BC的中点,即EF是△ABC的中位线.所以EF∥AC,EF=0.5AC.理由是:“三角形的中位线平行于第三边,并且等于它的一半.”在△ADC中,同理可以得到HG∥AC,HG=0.5AC.所以EF∥HG,EF=HG.所以四边形EFGH是平行四边形.理由是:“一组对边平行且相等的四边形是平行四边形”.第26讲┃回归教材[点析]顺次连接四边形各边中点所得到的新四边形的形状与原四边形对角线的关系(相等、垂直、相等且垂直)有关.第26讲┃回归教材[2011·邵阳]在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,顺次连接EF、FG、GH、HE.(1)请判断四边形EFGH的形状,并给予证明;(2)试添加一个条件,使四边形EFGH是菱形(写出你所添加的条件,不要求证明).图26-5中考变式第26讲┃回归教材第27讲┃梯形第27讲梯形第27讲┃考点聚焦考点聚焦考点1梯形的有关概念梯形定义一组对边________,另一组对边______的四边形叫梯形等腰梯形两腰相等的梯形叫等腰梯形直角梯形有一个角是直角的梯形叫直角梯形平行不平行第27讲┃考点聚焦考点2等腰梯形等腰梯形的性质轴对称性等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴性质定理1等腰梯形同一底上的两________相等性质定理2等腰梯形的对角线________底角相等第27讲┃考点聚焦等腰梯形的判定判定方法(1)定义法;(2)同一底上的两个角________的梯形是等腰梯形判定步骤(1)先判定它是梯形;(2)再用“两腰相等”或“同一底上的两个角相等”或“对角线相等”来判定它是等腰梯形相等第27讲┃考点聚焦考点3梯形中常用的辅助线辅助线添加方法及目的图形平移一腰从梯形的一个顶点作一腰的平行线,把梯形分成一个平行四边形和一个三角形作两高从同一底的两端作另一底的垂线,把梯形分成一个矩形和两个直角三角形第27讲┃考点聚焦平移对角线移动一条对角线,即过底的一端作对角线的平行线,可以借助所得到的平行四边形来研究梯形延长两腰延长梯形的两腰交于一点,得到两个三角形,如果是等腰梯形,则得到两个分别以梯形两底为底的等腰三角形连接中点并延长连接梯形一顶点与一腰的中点并延长与另一底的延长线相交,可得一三角形,将梯形的面积转化为三角形的面积,将梯形的上下底转移到同一直线上第27讲┃归类示例归类示例?类型之一梯形的基本概念及性质命题角度:1.梯形的定义及分类;2.梯形的中位线及有关计算.例1[2012·滨州]我们知道“连接三角形两边中点的线段叫做三角形的中位线”,“三角形的中位线平行于三角形的第三边,且等于第三边的一半”.类似地,我们把连接梯形两腰中点的线段叫做梯形的中位线

显示全部
相似文档