文档详情

拉普拉斯变换表.doc

发布:2016-07-02约小于1千字共4页下载文档
文本预览下载声明
附录A 拉普拉斯变换及反变换 1.表A-1 拉氏变换的基本性质 1 线性定理 齐次性 叠加性 2 微分定理 一般形式 初始条件为0时 3 积分定理 一般形式 初始条件为0时 4 延迟定理(或称域平移定理) 5 衰减定理(或称域平移定理) 6 终值定理 7 初值定理 8 卷积定理 2.表A-2 常用函数的拉氏变换和z变换表 序号 拉氏变换E(s) 时间函数e(t) Z变换E(z) 1 1 δ(t) 1 2 3 4 t 5 6 7 8 9 10 11 12 13 14 15 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设是的有理真分式 () 式中系数,都是实常数;是正整数。按代数定理可将展开为部分分式。分以下两种情况讨论。 ① 无重根 这时,F(s)可展开为n个简单的部分分式之和的形式。 (F-1) 式中,是特征方程A(s)=0的根。为待定常数,称为F(s)在处的留数,可按下式计算: (F-2) 或 (F-3) 式中,为对的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 = (F-4) 有重根 设有r重根,F(s)可写为 = 式中,为F(s)的r重根,,…, 为F(s)的n-r个单根; 其中,,…, 仍按式(F-2)或(F-3)计算,,,…, 则按下式计算: (F-5) 原函数为 (F-6) 422
显示全部
相似文档