2025中考数学复习冲刺之必考题巩固_专题11 抛物线综合压轴问题(含解析).docx
专题11抛物线综合压轴问题
1.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.
(1)求该抛物线的表达式;
(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
①当点P在直线BC的下方运动时,求△PBC的面积的最大值;
②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.
2.如图,抛物线交y轴于点,并经过点,过点A作轴交抛物线于点B,抛物线的对称轴为直线,D点的坐标为,连接,,.点E从A点出发,以每秒个单位长度的速度沿着射线运动,设点E的运动时间为m秒,过点E作于F,以为对角线作正方形.
(1)求抛物线的解析式;
(2)当点G随着E点运动到达上时,求此时m的值和点G的坐标;
(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.
3.在平面直角坐标系中,点O为坐标原点,抛物线经过点,点,与y轴交于点C.
(1)求a,b的值;
(2)如图1,点D在该抛物线上,点D的横坐标为,过点D向y轴作垂线,垂足为点E.点P为y轴负半轴上的一个动点,连接、设点P的纵坐标为t,的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);
(3)如图2,在(2)的条件下,连接,点F在上,过点F向y轴作垂线,垂足为点H,连接交y轴于点G,点G为的中点,过点A作y轴的平行线与过点P所作的x轴的平行线相交于点N,连接,,延长交于点M,点R在上,连接,若,,求直线的解析式.
4.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点且与x轴的负半轴交于点C.
(1)求该抛物线的解析式;
(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;
(3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.
5.如图,抛物线与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线经过B、C两点.
(1)求抛物线的解析式;
(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线及x轴分别交于点D、M.,垂足为N.设.
①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;
②当点P在直线下方的抛物线上运动时,是否存在一点P,使与相似.若存在,求出点P的坐标;若不存在,请说明理由.
6.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴分别交于点A(﹣1,0)和点B,与y轴交于点C(0,3).
(1)求抛物线的解析式及对称轴;
(2)如图1,点D与点C关于对称轴对称,点P在对称轴上,若∠BPD=90°,求点P的坐标;
(3)点M是抛物线上位于对称轴右侧的点,点N在抛物线的对称轴上,当BMN为等边三角形时,请直接写出点M的坐标.
7.如图,抛物线与x轴正半轴交于点A,与y轴交于点B.
(1)求直线的解析式及抛物线顶点坐标;
(2)如图1,点P为第四象限且在对称轴右侧抛物线上一动点,过点P作轴,垂足为C,交于点D,求的最大值,并求出此时点P的坐标;
(3)如图2,将抛物线向右平移得到抛物线,直线与抛物线交于M,N两点,若点A是线段的中点,求抛物线的解析式.
专题11抛物线综合压轴问题(解析版)
1.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.
(1)求该抛物线的表达式;
(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
①当点P在直线BC的下方运动时,求△PBC的面积的最大值;
②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.
【答案】见解析。
【解析】【分析】(1)将点A、B坐标代入二次函数表达式,即可求解;
(2)①S△PBC=PG(xC﹣xB),即可求解;②分点P在直线BC下方、上方两种情况,分别求解即可.
【解答】(1)将点A、B坐标代入二次函数表达式得:,解得:,
故抛物线的表达式为:y=x2+6x+5…①,
令y=0,则x=﹣1或﹣5,
即点C(﹣1,0);
(2)①如图1,过点P作y轴的平行线交BC于点G,
将点B、C的坐标代入一次函数表达式并解得:
直线BC的表达式为:y=x+1…②,
设点G(t,t+1),则点P(t,t2+6t+5),
S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2