文档详情

2025年福建省福州市台江区高三下学期3月联考数学试卷.docx

发布:2025-05-06约6.8千字共19页下载文档
文本预览下载声明

2025年福建省福州市台江区高三下学期3月联考数学试卷

题号

总分

得分

注意事项:

1.答题前填写好自己的姓名、班级、考号等信息

2.请将答案正确填写在答题卡上

第I卷(选择题)

请点击修改第I卷的文字说明

评卷人

得分

一、选择题(共3题,总计0分)

1.已知,则()A

(A)1<n<m(B)1<m<n(C)m<n<1(D)n<m<1(2006浙江理)

2.若等差数列的前5项和,且,则()

A.12 B.13 C.14 D.15(2008天津)

3.已知简谐运动的图象经过点,则该简谐运动的最小正周期和初相分别为()A

A., B.,

C., D.,

评卷人

得分

二、填空题(共18题,总计0分)

4.有一个各条棱长均为的正四棱锥,现用一张正方形包装纸将其完全包住,不能剪裁,但可以折叠,则包装纸的最小边长是▲.

5.已知函数图象上一点P(2,f(2))处的切线方程为,

则______3_____.

6.已知复数,它们所对应的点分别为A,B,C.若

,则的值是

7.设函数,,函数,则方程中实数根的个数是

关键字:根的个数;数形结合;对数函数

8.当时,函数的图像恒在直线的下方,则的取值范围是_________

9.若方程有一个正根、一个负根,并且两根的和为非负数,则实数的取值范围是_________

10.如图,该算法运行后输出的结果是________;

For

ForFrom1To10Step3

EndFor

Print

11.高三年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:

(1)根据上面图表,①②③④处的数值分别为多少;

(2)根据题中信息估计总体平均数是多少;

(3)估计总体落在中的概率.

分组

频数

频率

0.050

0.200

12

0.300

0.275

4

0.050

合计

12.若某程序流程图如图所示,则该程序运行后输出的等于.

第4题

第4题

13.如图,是半径为1的圆的直径,△ABC是边长为1的正三角形,则的最大值为.

14.若a,b为实数,集合,是集合M到集合P的一个映射,

则a+b=▲.

15.已知函数,则▲.

16.已知向量与的夹角为°,且,,若,且,

则实数的值为__________.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))

17.已知圆,过点的直线与圆相交于两点,且,则直线的方程是▲.

18.用长、宽分别是12与8的矩形硬纸卷成圆柱的侧面,则圆柱的体积为.

19.设平面∥平面,,,直线与交于点,且,,,____.

20.写出一个满足的函数=________.

21.某班有学生54人,有4张上海世博会门票,现根据学生的学号,用系统抽样的方法分给4位学生.若已知3号,29号,42号学生已被抽中,那么还有一个被抽到的学生学号是▲.

评卷人

得分

三、解答题(共9题,总计0分)

22.(本大题满分14分)

已知二次函数满足.

(Ⅰ)求的解析式;

(Ⅱ)若在上有最小值,最大值,求a的取值范围.

23.已知数列满足为常数。

(1)若数列是等差数列,求的值;

(2)若,求数列中的最大项和最小项;

(3)若,对任意的恒成立,求的取值范围。

24.如图,为圆内接四边形,延长两组对边分别交于点,,的平分线分别交,于点,,求证:。

25.某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数).

(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;

(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.【2012高考真题湖南理20】(本小题满分13分)

26.如图,在棱长均为4的三棱柱中,、分别是BC和的中点.

(1)求证:∥平面;

(2)若平面ABC⊥平面,,求三棱锥的体积.(江苏省南京市2011届高三第一次模拟考试)(本题满分14分)

27.已知且。条件函数在其定义域上是减函数;条件函数的定义域为。如果“或”为真,试求的取值范围。

2

显示全部
相似文档