华南师范大学附属中学2025届高三二模考前数学试题综合练习一含附加题含解析.doc
华南师范大学附属中学2025届高三二模考前数学试题综合练习一含附加题
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是()
A. B. C. D.
2.已知集合,则等于()
A. B. C. D.
3.已知复数满足(是虚数单位),则=()
A. B. C. D.
4.正四棱锥的五个顶点在同一个球面上,它的底面边长为,侧棱长为,则它的外接球的表面积为()
A. B. C. D.
5.设α,β为两个平面,则α∥β的充要条件是
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α,β平行于同一条直线
D.α,β垂直于同一平面
6.若,则的值为()
A. B. C. D.
7.函数图象的大致形状是()
A. B.
C. D.
8.下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是()
A.深圳的变化幅度最小,北京的平均价格最高
B.天津的往返机票平均价格变化最大
C.上海和广州的往返机票平均价格基本相当
D.相比于上一年同期,其中四个城市的往返机票平均价格在增加
9.已知某超市2018年12个月的收入与支出数据的折线图如图所示:
根据该折线图可知,下列说法错误的是()
A.该超市2018年的12个月中的7月份的收益最高
B.该超市2018年的12个月中的4月份的收益最低
C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益
D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元
10.观察下列各式:,,,,,,,,根据以上规律,则()
A. B. C. D.
11.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为()
A. B.
C. D.
12.某几何体的三视图如图所示,则该几何体的体积为()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在平面直角坐标系xOy中,己知直线与函数的图象在y轴右侧的公共点从左到右依次为,,…,若点的横坐标为1,则点的横坐标为________.
14.设全集,,,则______.
15.根据如图的算法,输出的结果是_________.
16.实数,满足约束条件,则的最大值为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知是公比为的无穷等比数列,其前项和为,满足,________.是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由.
从①,②,③这三个条件中任选一个,补充在上面问题中并作答.
18.(12分)曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)过原点且倾斜角为的射线与曲线分别交于两点(异于原点),求的取值范围.
19.(12分)在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ=4sin(θ+).
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)若直线l与曲线C交于M,N两点,求△MON的面积.
20.(12分)在直角坐标系xOy中,直线的参数方程为(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为.
(1)写出圆C的直角坐标方程;
(2)设直线l与圆C交于A,B两点,,求的值.
21.(12分)已知函数.
(Ⅰ)当时,讨论函数的单调区间;
(Ⅱ)若对任意的和恒成立,求实数的取值范围.
22.(10分)已知函数.
(Ⅰ)当时,求不等式的解集;
(Ⅱ)若存在满足不等式,求实数的取值范围.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
直线恒过定点,由此推导出,由此能求出点的坐标