河南省郑州市中牟县第一高级中学2025年高三下期末质量监测数学试题含解析.doc
河南省郑州市中牟县第一高级中学2025年高三下期末质量监测数学试题
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数满足:(为虚数单位),则()
A. B. C. D.
2.已知集合,B={y∈N|y=x﹣1,x∈A},则A∪B=()
A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}
3.设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为()
A. B.
C. D.
4.下列说法正确的是()
A.“若,则”的否命题是“若,则”
B.在中,“”是“”成立的必要不充分条件
C.“若,则”是真命题
D.存在,使得成立
5.定义在R上的函数,,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是()
A. B.
C. D.
6.在中,角,,的对边分别为,,,若,,,则()
A. B.3 C. D.4
7.在直角坐标系中,已知A(1,0),B(4,0),若直线x+my﹣1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是()
A. B.3 C. D.
8.在中,为边上的中点,且,则()
A. B. C. D.
9.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()
A.1 B.2
C.3 D.4
10.过点的直线与曲线交于两点,若,则直线的斜率为()
A. B.
C.或 D.或
11.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是()
A. B. C. D.
12.已知函数,若时,恒成立,则实数的值为()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知两动点在椭圆上,动点在直线上,若恒为锐角,则椭圆的离心率的取值范围为__________.
14.如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值为.
15.已知,,,则的最小值是__.
16.设变量,满足约束条件,则目标函数的最小值为______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图所示,已知平面,,为等边三角形,为边上的中点,且.
(Ⅰ)求证:面;
(Ⅱ)求证:平面平面;
(Ⅲ)求该几何体的体积.
18.(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.
(1)求直线的直角坐标方程;
(2)求曲线上的点到直线距离的最小值和最大值.
19.(12分)已知函数.
(1)若不等式有解,求实数的取值范围;
(2)函数的最小值为,若正实数,,满足,证明:.
20.(12分)如图,在四棱锥中,,,,和均为边长为的等边三角形.
(1)求证:平面平面;
(2)求二面角的余弦值.
21.(12分)在直角坐标系中,曲线的参数方程为:(其中为参数),直线的参数方程为(其中为参数)
(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程;
(2)若曲线与直线交于两点,点的坐标为,求的值.
22.(10分)已知直线:(为参数),曲线(为参数).
(1)设与相交于,两点,求;
(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A
【解析】
利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.
【详解】
由,则,
所以.
故选:A
本题考查了复数的四则运算、共轭复数的概念,属于基础题.
2.