小目标检测的轻量化改进技术.docx
小目标检测的轻量化改进技术
目录
小目标检测的轻量化改进技术(1)............................4
内容概述................................................4
1.1小目标检测背景.........................................4
1.2轻量化技术在目标检测中的应用...........................7
1.3文档概述...............................................9
小目标检测技术概述.....................................10
2.1小目标检测定义........................................11
2.2小目标检测的挑战......................................12
2.3小目标检测的常用方法..................................13
轻量化改进技术基础.....................................14
3.1轻量化模型结构........................................15
3.2模型压缩技术..........................................16
3.3模型加速策略..........................................18
轻量化改进技术方法.....................................19
4.1基于深度学习的轻量化网络设计..........................19
4.1.1卷积神经网络的轻量化................................21
4.1.2深度可分离卷积......................................22
4.1.3点卷积与分组卷积....................................23
4.2模型剪枝与量化........................................25
4.2.1模型剪枝技术........................................26
4.2.2模型量化方法........................................28
4.3模型融合与集成........................................29
4.3.1特征融合............................................31
4.3.2模型集成策略........................................32
实验与评估.............................................33
5.1数据集介绍............................................36
5.2实验设置..............................................37
5.3评价指标..............................................38
5.3.1准确率与召回率......................................39
5.3.2平均精度............................................40
5.3.3实时性评估..........................................42
5.4实验结果分析..........................................44
应用案例...............................................44
6.1轻量化小目标检测在安防监控中的应用....................46
6.2轻量化小目标检测在自动驾驶中的应用....................47
6.3轻量化小目标检测在其他领域的应用前景..................49
总结与展望.............................................51
小目标检测的轻量化改进技术(2)......................