文档详情

小目标检测的轻量化改进技术.docx

发布:2025-04-22约4.74万字共78页下载文档
文本预览下载声明

小目标检测的轻量化改进技术

目录

小目标检测的轻量化改进技术(1)............................4

内容概述................................................4

1.1小目标检测背景.........................................4

1.2轻量化技术在目标检测中的应用...........................7

1.3文档概述...............................................9

小目标检测技术概述.....................................10

2.1小目标检测定义........................................11

2.2小目标检测的挑战......................................12

2.3小目标检测的常用方法..................................13

轻量化改进技术基础.....................................14

3.1轻量化模型结构........................................15

3.2模型压缩技术..........................................16

3.3模型加速策略..........................................18

轻量化改进技术方法.....................................19

4.1基于深度学习的轻量化网络设计..........................19

4.1.1卷积神经网络的轻量化................................21

4.1.2深度可分离卷积......................................22

4.1.3点卷积与分组卷积....................................23

4.2模型剪枝与量化........................................25

4.2.1模型剪枝技术........................................26

4.2.2模型量化方法........................................28

4.3模型融合与集成........................................29

4.3.1特征融合............................................31

4.3.2模型集成策略........................................32

实验与评估.............................................33

5.1数据集介绍............................................36

5.2实验设置..............................................37

5.3评价指标..............................................38

5.3.1准确率与召回率......................................39

5.3.2平均精度............................................40

5.3.3实时性评估..........................................42

5.4实验结果分析..........................................44

应用案例...............................................44

6.1轻量化小目标检测在安防监控中的应用....................46

6.2轻量化小目标检测在自动驾驶中的应用....................47

6.3轻量化小目标检测在其他领域的应用前景..................49

总结与展望.............................................51

小目标检测的轻量化改进技术(2)......................

显示全部
相似文档