轻量化卷积神经网络目标检测技术研究综述.docx
轻量化卷积神经网络目标检测技术研究综述
目录
轻量化卷积神经网络目标检测技术研究综述(1)................3
内容概述................................................3
1.1研究背景与意义.........................................3
1.2文献回顾...............................................4
目标检测概述............................................6
2.1目标检测的基本概念.....................................7
2.2目标检测的主要挑战.....................................9
卷积神经网络基础.......................................11
3.1模型结构介绍..........................................12
3.2参数优化策略..........................................14
轻量化CNN技术..........................................16
4.1压缩方法..............................................17
4.2极简设计思想..........................................18
典型轻量化CNN模型......................................21
CNN在目标检测中的应用案例..............................22
6.1实验数据集选择........................................22
6.2检测性能评估指标......................................24
性能提升技术...........................................25
7.1训练数据预处理........................................26
7.2后端加速技术..........................................31
应用场景拓展...........................................33
8.1特殊物体检测..........................................34
8.2高动态环境检测........................................36
结论与未来展望.........................................37
9.1主要结论..............................................38
9.2研究方向建议..........................................41
轻量化卷积神经网络目标检测技术研究综述(2)...............42
内容综述...............................................42
1.1研究背景与意义........................................42
1.2研究内容与方法........................................44
1.3论文结构安排..........................................46
目标检测技术概述.......................................47
2.1目标检测的定义与分类..................................50
2.2基于区域的目标检测方法................................51
2.3基于特征的检测方法....................................52
轻量化卷积神经网络.....................................54
3.1轻量化网络的设计思路..................................55
3.2模型压缩技术...............................