改进YOLOv5s在异常烟丝识别检测中的轻量化算法.docx
改进YOLOv5s在异常烟丝识别检测中的轻量化算法
目录
改进YOLOv5s在异常烟丝识别检测中的轻量化算法(1)...........4
内容概要................................................4
1.1研究背景...............................................4
1.2研究目的与意义.........................................5
1.3文章结构...............................................6
相关技术概述............................................6
2.1YOLOv5s算法简介........................................7
2.2异常烟丝识别检测需求分析...............................8
2.3轻量化算法研究现状.....................................8
改进YOLOv5s算法设计....................................10
3.1算法改进思路..........................................10
3.2网络结构优化..........................................11
3.2.1卷积层设计..........................................11
3.2.2激活函数选择........................................12
3.2.3损失函数调整........................................13
3.3数据增强策略..........................................14
3.4模型压缩与加速........................................14
实验与分析.............................................15
4.1数据集介绍............................................16
4.2实验环境与参数设置....................................17
4.3实验结果与分析........................................18
4.3.1模型性能评估........................................19
4.3.2轻量化效果对比......................................19
4.3.3稳定性与鲁棒性分析..................................21
实验结果展示...........................................21
5.1实验数据展示..........................................22
5.2模型性能可视化........................................23
5.3轻量化效果展示........................................24
结论与展望.............................................24
6.1研究结论..............................................25
6.2研究不足与改进方向....................................26
6.3未来工作展望..........................................27
改进YOLOv5s在异常烟丝识别检测中的轻量化算法(2)..........28
内容综述...............................................28
1.1研究背景与意义........................................28
1.2YOLOv5s算法概述.......................................29
1.3轻量化技术的重要性..................................