2024-2025学年广东省广州市华南师大附中高三下期摸底考试数学试题试卷含解析.doc
2024-2025学年广东省广州市华南师大附中高三下期摸底考试数学试题试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为()
A. B.
C. D.
2.设α,β为两个平面,则α∥β的充要条件是
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α,β平行于同一条直线
D.α,β垂直于同一平面
3.已知函数是定义在上的奇函数,函数满足,且时,,则()
A.2 B. C.1 D.
4.已知复数,则对应的点在复平面内位于()
A.第一象限 B.第二象限
C.第三象限 D.第四象限
5.将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有()
A.14种 B.15种 C.16种 D.18种
6.已知与分别为函数与函数的图象上一点,则线段的最小值为()
A. B. C. D.6
7.中,点在边上,平分,若,,,,则()
A. B. C. D.
8.展开项中的常数项为
A.1 B.11 C.-19 D.51
9.已知函数是奇函数,则的值为()
A.-10 B.-9 C.-7 D.1
10.在中,为中点,且,若,则()
A. B. C. D.
11.在复平面内,复数对应的点的坐标为()
A. B. C. D.
12.已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则△的内切圆的半径为()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.春节期间新型冠状病毒肺炎疫情在湖北爆发,为了打赢疫情防控阻击战,我省某医院选派2名医生,6名护士到湖北、两地参加疫情防控工作,每地一名医生,3名护士,其中甲乙两名护士不到同一地,共有__________种选派方法.
14.若变量,满足约束条件则的最大值是______.
15.某部队在训练之余,由同一场地训练的甲?乙?丙三队各出三人,组成小方阵开展游戏,则来自同一队的战士既不在同一行,也不在同一列的概率为______.
16.已知向量,且,则___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在三棱锥S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D为棱AB的中点,SA=2
(I)证明:SD⊥BC;
(II)求直线SD与平面SBC所成角的正弦值.
18.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(Ⅰ)求直线的直角坐标方程与曲线的普通方程;
(Ⅱ)已知点设直线与曲线相交于两点,求的值.
19.(12分)数列满足.
(1)求数列的通项公式;
(2)设,为的前n项和,求证:.
20.(12分)如图,三棱锥中,,,,,.
(1)求证:;
(2)求直线与平面所成角的正弦值.
21.(12分)已知分别是椭圆的左、右焦点,直线与交于两点,,且.
(1)求的方程;
(2)已知点是上的任意一点,不经过原点的直线与交于两点,直线的斜率都存在,且,求的值.
22.(10分)已知函数f(x)=xlnx,g(x)=,
(1)求f(x)的最小值;
(2)对任意,都有恒成立,求实数a的取值范围;
(3)证明:对一切,都有成立.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.D
【解析】
先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.
【详解】
因为函数的最小正周期是,所以,即,所以,
的图象向左平移个单位长度后得到的函数解析式为,
由于其图象关于轴对称,所以,又,所以,所以,
所以,
因为的递增区间是:,,
由,,得:,,
所以函数的单调递增区间为().
故选:D.
本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.
2.B
【解析】
本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.
【详解】
由面面