文档详情

单位指数分布的偏差校正方法及其应用.docx

发布:2025-04-09约3.16万字共40页下载文档
文本预览下载声明

东北石油大学本科生毕业设计(论文)

摘要

在诸多领域涉及比例变量建模时,单位指数分布具有重要应用价值,但小样本条件下,其最大似然估计量的偏差会引发显著估计误差。为获取更可靠的估计量,本文展开深入研究。首先,提出最大似然法与参数自助偏差校正方法,详细剖析推导实现偏差修正最大似然估计方法的具体过程,并给出获取偏差校正自助估计器的步骤。其次,通过蒙特卡罗模拟实验,对两种偏差校正方法进行全面性能评估,结果表明,所提方法对大部分参数组合,均可显著降低最大似然估计量的偏差与均方误差。再者,采用土壤水分数据集与数值示例进行实例分析,进一步验证方法在实际应用中的有效性。本研究在理论上完善了单位指数分布估计的理论架构,在实践中为相关领域提供了更精准可靠的分析工具,对推动单位指数分布在各领域的应用具有重要意义。

关键词:单位指数分布、最大似然估计、偏差校正、自助法、蒙特卡洛模拟

Abstract

Whenmodelingproportionalvariablesinmanyfields,unitexponentialdistributionhasimportantapplicationvalue,butundersmallsampleconditions,thedeviationofitsmaximumlikelihoodestimatorcancausesignificantestimationerrors.Toobtainmorereliableestimates,thisarticleconductsin-depthresearch.Firstly,themaximumlikelihoodmethodandparameterbootstrapbiascorrectionmethodareinnovativelyproposed,andthespecificprocessofimplementingthebiascorrectedmaximumlikelihoodestimationmethodisanalyzedandderivedindetail.Thestepsforobtainingthebiascorrectedbootstrapestimatorarealsoprovided.Secondly,throughMonteCarlosimulationexperiments,acomprehensiveperformanceevaluationwasconductedonthetwobiascorrectionmethods.Theresultsshowedthattheproposedmethodcansignificantlyreducethebiasandmeansquareerrorofthemaximumlikelihoodestimatorformostparametercombinations.Furthermore,asoilmoisturedatasetandnumericalexampleswereusedforcaseanalysistofurthervalidatetheeffectivenessofthemethodinpracticalapplications.Inaddition,correspondingoptimizationstrategiesareproposedforcomplexdatafeaturesthatmayoccurinpracticalapplications,suchasoutliers,datamissing,andseasonalfluctuations.Thisstudyhastheoreticallyimprovedthetheoreticalframeworkforestimatingunitindexdistributionsandprovidedmoreaccurateandreliableanalyticaltoolsforrelatedfieldsinpractice,whichisofgreatsignificanceforpromotingtheapplicationofunitindexdistributionsinvari

显示全部
相似文档