综合法和分析法过程稿.PPT
文本预览下载声明
复习 * * * * 2.2直接证明与间接证明 2.2.1 综合法和分析法(1) 演绎推理是证明数学结论、建立数学体系的重要思维过程. 数学结论、证明思路的发现,主要靠合情推理. 推 理 合情推理 (或然性推理) 演绎推理 (必然性推理) 归纳 (特殊到一般) 类比 (特殊到特殊) 三段论 (一般到特殊) 例:已知a0,b0,求证a(b2+c2)+b(c2+a2)≥4abc 因为b2+c2 ≥2bc,a0 所以a(b2+c2)≥2abc. 又因为c2+b2 ≥2bc,b0 所以b(c2+a2)≥ 2abc. 因此a(b2+c2)+b(c2+a2)≥4abc. 证明: 利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法 用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论. 则综合法用框图表示为: … 例:在△ABC中,三个内角A、B、C对应的边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列,求证△ABC为等边三角形. 例:在锐角三角形ABC中, 求证sinA+sinB+sinCcosA+cosB+cosC 例:设抛物线y2=2px(p0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴(如图),证明直线AC经过原点O 4 2 -2 -4 -6 5 B A C O F
显示全部