2024_2025学年新教材高中数学第4章指数与对数4.2.2对数的运算性质课后巩固提升含解析苏教版必修第一册.docx
PAGE
4-
第4章指数与对数
4.2对数
4.2.2对数的运算性质
课后篇巩固提升
必备学问基础练
1.已知a=log32,则log38-2log36=()
A.a-2 B.5a-2
C.3a-(1+a)2 D.3a-a2-1
答案A
解析log38-2log36=3log32-2(log32+log33)=3a-2(a+1)=a-2.
2.(2024浙江诸暨中学高二期中)已知log43=p,log325=q,p0,q0,则lg5=()
A. B.
C. D.
答案D
解析pq=log43×log325=,∴lg5=.故选D.
3.若lgx-lgy=a(x0,y0),则lg3-lg3=()
A.3a B.a C.a D.
答案A
解析∵lgx-lgy=a,∴lg3-lg3=3lg-3lg=3lgx-3lgy=3a.
4.设2a=5b=m(m0),且=2,则m=()
A. B.10 C.20 D.100
答案A
解析∵2a=5b=m,∴a=log2m,b=log5m,∴=logm2+logm5=logm10=2,∴m2=10.又m0,∴m=.故选A.
5.(2024江西靖安中学高一月考)设x,y满意x+4y=40,且x,y都是正数,则lgx+lgy的最大值是()
A.4 B.2 C.40 D.20
答案B
解析因为x,y都是正数,所以40=x+4y≥2=4,即xy≤100,当且仅当x=4y且x+4y=40,即x=20,y=5时,等号成立.所以lgx+lgy=lg(xy)≤lg100=2.故选B.
6.计算:log2×log3×log5=.?
答案-12
解析原式=
==-12.
7.已知log4a=log25b=,求lg(ab)的值.
解∵log4a=log25b=,∴a=,b=2,
∴ab=×2=(4×25=10=(102=1,
∴lg(ab)=lg1=2.
8.(2024江苏南京高一期中)计算:
(1)()0+2×0.5-0.00;
(2)2lg5+log2+lg4.
解(1)()0+2×0.5-0.00
=1+2×20.5-(103
=1+2×2×0.5-1=1+2×-10=-6.
(2)2lg5+log2+lg4=2lg5+log22-3+lg22
=2(lg5+lg2)-3=2lg10-3=-1.
关键实力提升练
9.(2024陕西西安中学高三模拟)已知x·log32=1,则4x=()
A.4 B.6 C. D.9
答案D
解析∵x·log32=1,∴x=log23,∴4x==9.故选D.
10.(2024上海高一课时练习)对于一切不等于1的正数x,则等于()
A. B.
C. D.
答案D
解析由题意,依据对数的换底公式,可得=logx3+logx4+logx5=logx(3×4×5)=logx60=.故选D.
11.已知实数a,b满意lna+lnb=ln(a+b+3)(a0,b0),则a+b的最小值为()
A.2 B.4 C.5 D.6
答案D
解析依题意lna+lnb=lnab=ln(a+b+3),由已知得ab=a+b+3,即(a-1)(b-1)=4,a+b=(a-1)+(b-1)+2≥2+2=6,当且仅当a-1=b-1,即a=b=3时,等号成立.故a+b的最小值为6.故选D.
12.(2024山东东营第一中学高二期中)围棋棋盘共19行19列,361个格点,每个格点上可能出现黑、白、空三种状况,因此有3613种不同的状况,我国北宋学者沈括在他的著作《梦溪笔谈》中也探讨过这个问题,他分析得出一局围棋不同的改变大约有“连书万字五十二”种,即1000052,下列最接近的是(注:lg3≈0.477)()
A.10-25 B.10-26 C.10-35 D.10-36
答案D
解析依据题意,对于,可得lg=lg3361-lg1000052=361×lg3-52×4≈-35.8,即≈10-35.8,故10-36与其最接近.故选D.
13.(多选)下列各式中不正确的是()
A.=loga2(a0,a≠1)
B.lg2+lg5=lg7
C.(lnx)2=2lnx
D.lglgx
答案ABC
解析A选项,由换底公式,可得=log36=1+log32,故A错误;B选项,lg2+lg5=lg(2×5)=1,故B错误;C选项,(lnx)2=lnx×lnx≠2lnx,故C错误;D选项,lg=lglgx,故D正确.故选ABC.
14.(多选)下列运算错误的是()
A.2lo10+lo0.25=2
B.log427×log258×log95=
C.