2017届人教A版平面向量、数系的扩充与复数的引入单元检测.doc
文本预览下载声明
第四章)平面向量、数系的扩充与复数的引入
第一节 平面向量的概念及其线性运算
1.向量的有关概念
名称
定义
备注
向量
既有大小又有方向的量;向量的大小叫做向量的长度(或称模)
平面向量是自由向量
零向量
长度为0的向量;其方向是任意的
记作0
单位向量
长度等于1个单位的向量
非零向量a的 单位向量为±a|a|
平行向量
方向相同或相反的非零向量
0与任一向量平行或共线
共线向量
方向相同或相反的非零向量又叫做共线向量
相等向量
长度相等且方向相同的向量
两向量只有相等或不等,不能比较大小
相反向量
长度相等且方向相反的向量
0的相反向量为0
2.向量的线性运算
向量运算
定义
法则
(或几何意义)
运算律
加法
求两个向量和的运算
三角形法则
平行四边形法则
(1)交换律:
a+b=b+a;
(2)结合律:
(a+b)+c=
a+(b+c)
减法
求a与b的相反向量-b的和的运算叫做a与b的差
三角形法则
a-b=a+(-b)
数乘
求实数λ与向量a的积的运算
(1)|λa|=|λ||a|;
(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0
λ(μ a)=(λμ)a;
(λ+μ)a=λa+μ a;
λ(a+b)=λa+λb
3.共线向量定理
向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa.
[小题体验]
1.判断下列四个命题:
①若a∥b,则a=b;②若|a|=|b|,则a=b;③若|a|=|b|,则a∥b;④若a=b,则|a|=|b|.
其中正确的个数是( )
A.1 B.2
C.3 D.4
答案:A
2.(教材习题改编)化简:
(1)(+)++=________.
(2) ++-=________.
答案:(1) (2)0
3.已知a与b是两个不共线的向量,且向量a+λb与-(b-3a)共线,则λ=________.
答案:-13
1.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.
2.在向量共线的重要条件中易忽视“a≠0”,否则λ可能不存在,也可能有无数个.
3.要注意向量共线与三点共线的区别与联系.
[小题纠偏]
1.若a与b是共线向量,b与c是共线向量,则a与c的关系是________.(填序号)
①共线;②不共线;③以上二者皆可能.
答案:③
2.若菱形ABCD的边长为2,则|-+ |=________.
解析:|-+ |=|++|=||=2.
答案:2
考点一 平面向量的有关概念基础送分型考点——自主练透
[题组练透]
1.(易错题)给出下列命题:
①若|a|=|b|,则a=b;
②若A,B,C,D是不共线的四点,则=是四边形ABCD为平行四边形的充要条件;
③若a=b,b=c,则a=c;
④a=b的充要条件是|a|=|b|且a∥b;
⑤若a∥b,b∥c,则a∥c.
其中正确命题的序号是( )
A.②③ B.①②
C.③④ D.④⑤
解析:选A ①不正确.两个向量的长度相等,但它们的方向不一定相同.
②正确.∵=,∴||=||且∥,
又A,B,C,D是不共线的四点,
∴四边形ABCD为平行四边形;
反之,若四边形ABCD为平行四边形,
则∥且||=||,因此,=.
③正确.∵a=b,∴a,b的长度相等且方向相同,
又b=c,∴b,c的长度相等且方向相同,
∴a,c的长度相等且方向相同,故a=c.
④不正确.当a∥b且方向相反时,即使|a|=|b|,也不能得到a=b,故|a|=|b|且a∥b不是a=b的充要条件,而是必要不充分条件.
⑤不正确.考虑b=0这种特殊情况.
综上所述,正确命题的序号是②③.
2.设a0为单位向量,下列命题中:①若a为平面内的某个向量,则a=|a|·a0;②若a与a0平行,则a=|a|a0;③若a与a0平行且|a|=1,则a=a0.假命题的个数是( )
A.0 B.1
C.2 D.3
解析:选D 向量是既有大小又有方向的量,a与|a|a0的模相同,但方向不一定相同,故①是假命题;若a与a0平行,则a与a0的方向有两种情况:一是同向,二是反向,反向时a=-|a|a0,故②③也是假命题.综上所述,假命题的个数是3.
[谨记通法]
向量有关概念的5个关键点
(1)向量:方向、长度.
(2)非零共线向量:方向相同或相反.
(3)单位向量:长度是一个单位长度.
(4)零向量:方向没有限制,长度是0.
(5)相等相量:方向相同且长度相等.如“题组练透”第1题易混淆有关概念.
考点二 向量的线性运算基础送分型考点——自主练透
[题组练透]
1.(2015·全国卷Ⅰ)设D为△ABC所在平面内一点,=3,则( )
A.=-13+43
B.=1
显示全部