直线和平面垂直判定-学案(人教A版必修二).doc
文本预览下载声明
2.3.1 直线与平面垂直的判定
一、学习目标:
知识与技能:理解直线与平面垂直的定义, 掌握直线与平面垂直判定的定理,并能运用判定定理证明一些空间位置关系的简单命题. 理解直线与平面所成的角的定义及求法;
过程与方法:培养几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。
情感态度与价值观:亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣,同时培养从“感性认识”到“理性认识”过程中获取新知的能力。
二、学习重、难点
学习重点: 操作确认并概括出直线与平面垂直的定义和判定定理。
学习难点: 操作确认并概括出直线与平面垂直的判定定理及初步运用
三、使用说明及学法指导:
1、限定45分钟完成,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。3、对小班学生要求完成全部问题,实验班完成80%以上,平行班完成60%以上.4、A级是自主学习,B级是合作探究,C级是提升
四、知识链接:
直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行
平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行
五、学习过程:自主探究
一、直线与平面垂直的判定
1、线面垂直的定义
A问题1、结合对下列问题的思考,试着给出直线和平面垂直的定义.
(1)阳光下,直立于地面的旗杆AB与它在地面上的影子BC所成的角度是多少?
(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?
(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么?
A问题2、直线与平面垂直的定义
如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作:l⊥α. 直线 l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足。
符号语言: 图形语言:
思想: 直线与平面垂直 直线与平面垂直
A思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直? (2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?即若,则
2、直线与平面垂直的判定定理
A问题3、请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD(如图1),将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)
(图1) (图2)
(1)折痕AD与桌面垂直吗?
(2)如何翻折才能使折痕AD与桌面所在的平面垂直?
A问题4、直线与平面垂直的判定定理。
定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
符号语言: 图形语言:
思想: 直线与直线垂直直线与平面垂直
例1有一根旗杆高,它的顶端挂一条长的绳子,拉紧绳子并把它的下端放在地面上的两点(和旗杆脚不在同一直线上),如果这两点都和旗杆脚的距离是,那么旗杆就和地面垂直,为什么?
A 问题5、如图,在长方体ABCD-A1B1C1D1中,请列举与平面ABCD垂直的直线。并说明这些直线有怎样的位置关系?
A例2:如图5,已知,则吗?请说明理由。
小结:判断直线与平面垂直的方法
(1)定义法:(2)直接法:线面垂直的判定定理(3)间接法: 如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面即,则
3、直线与平面所成的角
问题6: 斜线:
斜足:
斜线在平面上的投影:
直线和平面所成的角:
一条直线垂直于平面,我们说它们所成的角是直角;(判断直线与平面垂直的方法4)
一条直线和平面平行或在平面内,我们说它们所成的角是0°的角.
例3: 在正方体中,求:
(1)直线和平面ABCD所成的角
(2)直线和平面所成的角
小结:直线和平面所成角的步骤
①作图—找出或作出直线在平面上的射影
②证明—证明所找或所作角即为所求角 ③计算—通常在三角形中计算角
六、达标检测:
1直线与平面(内的两条直线都垂直,则直线与平面(的位置关系是
(A)平行 (B)垂直 (C)在平面(内 (D)无法确定
2对于已知直线a,如果直线b同时满足下列三个条件:
①
显示全部