高中数学 《平面向量数量积的坐标表示模夹角》导学案 新人教A版必修.doc
文本预览下载声明
2.4.2《平面向量数量积的坐标表示、模、夹角》导学案
【学习目标】
学会用平面向量数量积的坐标表达式,会进行数量积的运算。掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题. 平面向量数量积及运算规律.平面向量数量积的应用
引入向量的数量积的坐标表示,我们得到下面一些重要结论:
(1)向量模的坐标表示:(2)平面上两点间的距离公式:
向量a的起点和终点坐标分别为A(x1,y1),B(x2,y2)AB=
(3)两向量的夹角公式cos向量垂直的判定向量的判定
(二)合作探究,精讲点拨
探究一:已知两个非零向量a=(x1,x2),b=(x2,y2),怎样用a与b的坐标表示数量积a·b呢?
a·b=(x1,y1)·(x2,y2)=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2=x1x2+y1y2
教师:巡视辅导学生,解决遇到的困难,估计学生对正交单位基向量i,j的运算可能有困难,点拨学生:i2=1,j2=1,i·j=0
探究二:探索发现向量的模的坐标表达式
若a=(x,y),如何计算向量的模|a|呢?
若A(x1,x2),B(x2,y2),如何计算向量AB的模两点A、B间的距离呢?
例1、如图,以原点和A(5, 2)为顶点作等腰直角OAB,使(B = 90(,求点B和向量的坐标.
探究三:向量夹角、垂直、坐标表示
设a,b都是非零向量,a=(x1,y1),b(x2,y2),如何判定a
2、a⊥b= =x1x2+y1y2=0
3、a∥b =X1y2-x2y1=0
例2 在△ABC中,=(2, 3),=(1, k),且ABC的一个内角为直角,求k值.
当k为何值时,(1)垂直?
(2)平行吗?平行时它们是同向还是反向?
【学习反思】
【基础达标】已知|a|=1,|b|=,且(a-b)与a垂直,则a与b的夹角是( )
A.60° B.30° C.135° D.45°
已知|a|=2,|b|=1,a与b之间的夹角为,那么向量m=a-4b的模为( )
A.2 B.2 C.6 D.12
3、a=(5,-7),b=(-6,-4),求a与b的 数量积
4、设a=(2,1),b=(1,3),求a·b及a与b的夹角
5、已知向量a=(-2,-1),b=(λ,1)若a与b的夹角为钝角,则λ取值范围是多少?
【拓展提升】
1.已知则( )
A.23 B.57 C.63 D.83
2.已知则夹角的余弦为( )
A. B. C. D.
3.则__________。
4.已知则__________。
5.则_______ _______
6.与垂直的单位向量是__________
A. B.
D.
7.则方向上的投影为_________
8.A(1,2),B(2,3),C(2,0)所以为( )
A.直角三角形 B.锐角三角形
C.钝角三角形 D.不等边三角形
9.已知A(1,0),B(5,-2),C(8,4),D.(4.6)则四边形ABCD为( )
A.正方形 B.菱形 C.梯形 D. 矩形
10.已知点A(1,2),B(4,-1),问在y轴上找点C,使∠ABC=90o若不能,说明理由;若能,求C坐标。
4
显示全部