文档详情

梅江中学八年级数学上册 15.4 因式分解(第2课时)教案 新人教版.doc

发布:2017-08-06约字共7页下载文档
文本预览下载声明
15.4因式分解(2) 完全平方公式 教学目标 (一)教学知识点 1.完全平方公式的推导及其应用. 2.完全平方公式的几何解释. (二)能力训练要求 1.经历探索完全平方公式的过程,进一步发展符号感和推理能力. 2.重视学生对算理的理解,有意识地培养学生的思维条理性和表达能力. (三)情感与价值观要求 在灵活应用公式的过程中激发学生学习数学的兴趣,培养创新能力和探索精神. 教学重点 完全平方公式的推导过程、结构特点、几何解释,灵活应用. 教学难点 理解完全平方公式的结构特征并能灵活应用公式进行计算. 教学方法 自主探索法 有了平方差公式的学习基础,学生可以在教师引导下自主探索完全平方公式,最后达到灵活、准确应用公式的目的. 教具准备 投影片. 教学过程 Ⅰ.提出问题,创设情境 [师]请同学们探究下列问题: (出示投影片) 一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,… (1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖? (2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖? (3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖? (4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么? [生](1)第一天老人一共给了这些孩子a2糖. (2)第二天老人一共给了这些孩子b2糖. (3)第三天老人一共给了这些孩子(a+b)2糖. (4)孩子们第三天得到的糖块总数与前两天他们得到的糖块总数比较,应用减法.即: (a+b)2(a2+b2) 我们上一节学了平方差公式即(a+b)(a-b)=a2-b2,现在遇到了两个数的和的平方,这倒是个新问题. [师]老师很欣赏你的观察力,这正是我们这节课要研究的问题. Ⅱ.导入新课 [师]能不能将(a+b)2转化为我们学过的知识去解决呢? [生]可以.我们知道a2=a·a,所以(a+b)2=(a+b)(a+b),这样就转化成多项式与多项式的乘积了. [师]像研究平方差公式一样,我们探究一下(a+b)2的运算结果有什么规律. (出示投影片) 计算下列各式,你能发现什么规律? (1)(p+1)2=(p+1)(p+1)=_______; (2)(m+2)2=_______; (3)(p-1)2=(p-1)(p-1)=________; (4)(m-2)2=________; (5)(a+b)2=________; (6)(a-b)2=________. [生甲](1)(p+1)2=(p+1)(p+1)=p2+p+p+1=p2+2p+1 (2)(m+2)2=(m+2)(m+2)=m2+2m+m·2+2×2=m2+4m+4 (3)(p-1)2=(p-1)(p-1)=p2+p·(-1)+(-1)·p+(-1)×(-1)=p2-2p+1 (4)(m-2)2=(m-2)(m-2)=m2+m·(-2)+(-2)·m+(-2)×(-2)=m2-4m+4 (5)(a+b)2=(a+b)(a+b)=a2+ab+ba+b2=a2+2ab+b2 (6)(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2 [生乙]我还发现(1)结果中的2p=2·p·1,(2)结果中4m=2·m·2,(3)、(4)与(1)、(2)比较只有一次项有符号之差,(5)、(6)更具有一般性,我认为它可以做公式用. [师]大家分析得很好.可以用语言叙述吗? [生]两数和(或差)的平方等于这两数的平方和再加(或减)它们的积的2倍. [生]它是一个完全平方的形式,能不能叫完全平方公式呢? [师]很有道理.它和平方差公式一样,使整式运算简便易行.于是我们得到完全平方公式: 文字叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 符号叙述:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 其实我们还可以从几何角度去解释完全平方差公式. (出示投影片) 你能根据图(1)和图(2)中的面积说明完全平方公式吗? [生甲]先看图(1),可以看出
显示全部
相似文档