文档详情

梅江中学八年级数学下册 19.1.1 平行四边形的性质教案1 新人教版.doc

发布:2017-08-11约1.32千字共3页下载文档
文本预览下载声明
19.1.1 平行四边形及其性质(一) 教学目标: 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 培养学生图中的竹篱笆格子汽车的防护链的形象 平行四边形是我们常见的图形,平行四边形(1)定义:两组对边分别平行的四边形是平行四边形. (2)表示:平行四边形用符号“”来表示. 如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.AB//DC ,AD//BC , ∴四边形ABCD是平行四边形(判定); ②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质). 平行四边形是一种特殊的四边形,它除具有四边形的性质两组对边分别平行外,还有特殊的性质. (1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角. (相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.) (2)猜想 平行四边形的对边相等、对角相等. 下面证明这个结论的正确性. 已知:如图ABCD, 求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD. 分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论. (作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.) 证明:连接AC, ∵  AB∥CD,AD∥BC, ∴  ∠1=∠3,∠2=∠4. 又  AC=CA, ∴  △ABC≌△CDA (ASA). ∴  AB=CD,CB=AD,∠B=∠D. 又 ∠1+∠4=∠2+∠3, ∴  ∠BAD=∠BCD. 由此得到: 平行四边形性质1  平行四边形的对边相等. 平行四边形性质2 平行四边形的对角相等. 五、例习题分析 例1(教材P93例1) 例2(补充)如图,在平行四边形ABCD中,AE=CF, 求证:AF=CE. AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论. 证明略. 六、随堂练习 1.填空: (1)在ABCD中,∠A=,则∠B∠C= 度,∠D= 度(2)ABCD中,A—∠B=240,A= 度B= 度,∠C= 度,∠D= 度. (3)如果ABCD的周长为28cm,2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm. 2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF. ▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌ ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓
显示全部
相似文档