大学物理北京邮电大学习题2.doc
文本预览下载声明
习题二
2-1 一细绳跨过一定滑轮,绳的一边悬有一质量为的物体,另一边穿在质量为的圆柱体的竖直细孔中,圆柱可沿绳子滑动.今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度下滑,求,相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计).
解:因绳不可伸长,故滑轮两边绳子的加速度均为,其对于则为牵连加速度,又知对绳子的相对加速度为,故对地加速度,由图(b)可知,为
①
又因绳的质量不计,所以圆柱体受到的摩擦力在数值上等于绳的张力,由牛顿定律,有
②
③
联立①、②、③式,得
讨论 (1)若,则表示柱体与绳之间无相对滑动.
(2)若,则,表示柱体与绳之间无任何作用力,此时, 均作自由落体运动.
题2-1图
2-2 一个质量为的质点,在光滑的固定斜面(倾角为)上以初速度运动,的方向与斜面底边的水平线平行,如图所示,求这质点的运动轨道.
解: 物体置于斜面上受到重力,斜面支持力.建立坐标:取方向为轴,平行斜面与轴垂直方向为轴.如图2-2.
题2-2图
方向: ①
方向: ②
时
由①、②式消去,得
2-3 质量为16 kg 的质点在平面内运动,受一恒力作用,力的分量为=6 N,=-7 N,当=0时,0,=-2 m·s-1,=0.求
当=2 s时质点的 (1)位矢;(2)速度.
解:
(1)
于是质点在时的速度
(2)
2-4 质点在流体中作直线运动,受与速度成正比的阻力(为常数)作用,=0时质点的速度为,证明(1) 时刻的速度为=;(2) 由0到的时间内经过的距离为
=()[1-];(3)停止运动前经过的距离为;(4)证明当时速度减至的,式中m为质点的质量.
答: (1)∵
分离变量,得
即
∴
(2)
(3)质点停止运动时速度为零,即t→∞,
故有
(4)当t=时,其速度为
即速度减至的.
2-5 升降机内有两物体,质量分别为,,且=2.用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速=g上升时,求:(1) 和相对升降机的加速度.(2)在地面上观察,的加速度各为多少?
解: 分别以,为研究对象,其受力图如图(b)所示.
(1)设相对滑轮(即升降机)的加速度为,则对地加速度;因绳不可伸长,故对滑轮的加速度亦为,又在水平方向上没有受牵连运动的影响,所以在水平方向对地加速度亦为,由牛顿定律,有
题2-5图
联立,解得方向向下
(2) 对地加速度为
方向向上
在水面方向有相对加速度,竖直方向有牵连加速度,即
∴
,左偏上.
2-6一质量为的质点以与地的仰角=30°的初速从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.
解: 依题意作出示意图如题2-6图
题2-6图
在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,
而抛物线具有对轴对称性,故末速度与轴夹角亦为,则动量的增量为
由矢量图知,动量增量大小为,方向竖直向下.
2-7 一质量为的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并在抛出1 s,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒?
解: 由题知,小球落地时间为.因小球为平抛运动,故小球落地的瞬时向下的速度大小为,小球上跳速度的大小亦为.设向上为轴正向,则动量的增量
方向竖直向上,
大小
碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒.
2-8 作用在质量为10 kg的物体上的力为N,式中的单位是s,(1)求4s后,这物体的动量和速度的变化,
显示全部