文档详情

【金版学案】2014-2015学年高中数学 模块综合检测试题 苏教版必修4.doc

发布:2017-09-03约4.24千字共8页下载文档
文本预览下载声明
模块综合检测卷 (测试时间:120分钟 评价分值:150分) 一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2013·湖北卷)已知点A(-1,1),B(1,2),C(-2,-1),D(3,4)则向量在方向上的投影为(  ) A. B. C.- D.- 解析:∵=(2,1),=(5,5),∴·=(2,1)·(5,5)=15,||==5.所以向量在方向上的投影为||cos,===,故选A. 答案:A 2.(2013·浙江卷)已知α∈R,sin α+2cos α=,则tan 2α=(  ) A. B. C.- D.- 解析:由已知可求得tan α=-3或,∴tan 2α=-,故选C. 答案:C 3.函数f(x)=Asin(ωx+φ)的图象如图所示,则f(0)=(  ) A.1 B. C. D. 解析:由图象知A=1,T=4=π, ∴ω=2,把代入函数式中,可得φ=, f(x)=Asin(ωx+φ)=sin, 故f(0)=sin=. 答案:D 4.若O、A、B是平面上不共线的任意三点,则以下各式中成立的是 (  ) A.=+ B.=- C.=-+ D.=-- 解析:根据向量的表示可知选B. 答案:B 5.(2013·重庆卷)4cos 50°-tan 40°=(  ) A. B. C. D.2-1 解析:4cos 50°-tan 40° == =,故选C. 答案:C 6.为了得到函数y=2sin,x∈R的图象,只需把函数y=2sin x,x∈R的图象上所有的点(  ) A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的(纵坐标不变) B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) C.向右平移个单位长度,再把所得各点的横坐标缩短到原来的(纵坐标不变) D.向右平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) 解析:f(x)=2sin x向左平移得f=2sin=g(x),把g(x)图象横坐标伸长到原来的3倍得g=2sin. 答案:B 7.若向量a=(1,2),b=(1,-1),则2a+b与a-b的夹角等于(  ) A.- B. C. D. 解析:2a+b=(3,3),a-b=(0,3), 则(2a+b)·(a-b)=3×0+3×3=9, |2a+b|=3,|a-b|=3. 设2a+b与a-b的夹角为θ,且θ∈[0,π], 则cos θ==,得θ=,故选C. 答案:C 8.函数f(x)=,x∈(0,2π)的定义域是(  ) A. B. C. D. 解析:如下图所示, ∵sin x≥, ∴≤x≤. 答案:B 9.(2013·湖南卷)已知a,b是单位向量,a·b=0.若向量c满足|c-a-b|=1,则|c|的取值范围是(  ) A.[-1,+1] B.[-1,+2] C.[1,+1] D.[1,+2] 解析:因为a·b=0,即a⊥b,又|a|=|b|=1,所以|a+b|=,不妨让a,b固定,设u=a+b,则|c-u|=1,即c的终点在以u对应点为圆心,半径为1的圆上.则当c与u方向相同时,|c|max=+1,当c与u方向相反时,|c|min=-1,所以|c|的取值范围是[-1,+1],故选A. 答案:A 10.已知在△ABC中,向量与满足·=0,且·= , 则△ABC为(  ) A.三边均不相等的三角形 B.直角三角形 C.等腰非等边三角形 D.等边三角形 解析:如图,设=,=,则原式化为:+)·=0,即·=0, ∴⊥. ∵四边形AEDF是菱形, ∴∠EAD=∠DAC. ∵·=cos ∠BAC=, ∴cos ∠BAC=. ∴∠BAC=60°,∴∠BAD=∠DAC=30°, △ABH≌△ACH?AB=AC,∵∠BAC=60°, ∴△ABC是等边三角形. 答案:D 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 11.(2013·新课标Ⅱ卷)已知正方形ABCD的边长为2,E为CD的中点,则·=________. 解析:因为已知正方形ABCD的边长为2,E为CD的中点,则·=0, 故·=(+)·(+)=·(-)=2-·+·-2=4+0-0-×4=2. 答案:2 12.(2013·上海卷)若cos xcos y+sin xsin y=,sin 2x+sin 2y=,则sin(x+y)=________. 解析:cos(x-y)=,sin
显示全部
相似文档