文档详情

《广东省2017年中考数学第6章图形与变换、坐标》总复习课件第3节2.ppt

发布:2016-12-25约1.05万字共60页下载文档
文本预览下载声明
Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. ∵AN⊥CM,∠ACB=90°, ∴∠CAN+∠ACM=90°,∠MCD+∠ACM=90°. ∴∠CAN=∠MCD. ∵MD⊥CB, ∴∠MDC=∠ACB=90°. ∴△CAN∽△DCM. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 考点演练 4. 如果两个相似三角形对应边的比为2∶3,那么这两个相似三角形面积的比是 (  ) A. 2∶3 B. 2∶3 C. 4∶9 D. 8∶27 5. 两个相似三角形对应中线的比为2∶3,周长的和是20,则这两个三角形的周长分别为 (  ) A. 8和12 B. 9和11 C. 7和13 D. 6和14 C A Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 6. 如图1-6-2-11,矩形ABCD中,AB=3,BC=10,点P是AD上的一个动点,若以A,P,B为顶点的三角形与△PDC相似,则AP=_____________. 1或5或9 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 7. 如图1-6-2-12,已知△ABC∽△ADE,AB=30 cm,AD= 18 cm,BC=20 cm,∠BAC=75°,∠ABC=40°. (1)求∠ADE和∠AED的度数; (2)求DE的长. 解:(1)∵∠BAC=75°,∠ABC=40°, ∴∠C=180°-∠BAC-∠ABC=180°-75°- 40°=65°. ∵△ABC∽△ADE, ∴∠ADE=∠ABC=40°,∠AED=∠C=65°. (2)∵△ABC∽△ADE, 解得DE=12(cm). Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 考点点拨: 本考点的题型不固定,难度中等. 解答本考点的有关题目,关键在于熟练掌握相似三角形的性质(相关要点详见“知识梳理”部分). 注意以下要点: 两个三角形相似,如果未指明哪一组边是对应边,哪一对角是对应角,则应进行分类讨论,将各种可能的情况一一呈现出来,不遗漏、不偏颇地进行求解或证明. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 考点4 相似三角形的判定 考点精讲 【例4】(2016齐齐哈尔)如图1-6-2-13,在△ABC中,AD⊥ BC,BE⊥AC,垂足分别为点D,E,AD与BE相交于点F. (1)求证:△ACD∽△BFD; (2)当tan∠ABD=1,AC=3时,求BF的长. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 思路点拨:(1)由∠C+∠DBF=90°,∠C+∠DAC=90°,推出∠DBF=∠DAC,由此即可得证; (2)先证明AD=BD,由△ACD∽△BFD,得 即可得解. (1)证明:∵AD⊥BC,BE⊥AC, ∴∠BDF=∠ADC=∠BEC=90°. ∴∠C+∠DAC=90°,∠C+∠DBF=90°. ∴∠DBF=∠DAC. ∴△ACD∽△BFD. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2
显示全部
相似文档