3.33.4由三视图描述几何体简单几何体的表面展开图(12大题型提分练)-【新课标】2024-2025学年九年级数学下册同步精品课堂(浙教版)[含答案].pdf
3
(浙教版)九年级下册数学《第章三视图与表面展开图》
3.33.4
由三视图描述几何体简单几何体的表面展开图
由三视图描述几何体(或实物模型),一般先根据各视图想象从各个方向看到的几何体形状,
“
然后综合起来确定几何体(或实物模型)的形状,再根据三个视图长对正、高平齐、宽相
”.
等的关系,确定轮廓线的位置以及各个方向的尺寸
“”
◆1.几何体的表面展开图:将几何体沿着某些棱剪开,并使各个面连在一起,铺平所
得到的平面图形称为几何体的表面展开图.
◆2.直棱柱的表面展开图
直棱柱的表面展开图有以下特征:
1
()两个底面的展开图全等;
2.
()侧面展开图均为矩形,且各个矩形有一条边相等
◆3.正方体的表面展开图
,,
正方体是特殊的棱柱它的六个面都是大小相同的正方形将一个正方体的表面沿某些棱剪
,11.
开可以得到种不同的展开图,如下表
★正方体展开图共11种:
试卷第1页,共25页
【注意】不能作为正方体表面展开图的常见情况:
1.四个以上的正方形排成一排,或四个正方形排成一排且另两个在这一排的同侧,如
或或等;
2.“”;
出现田字形,如等
3.“”.
出现凹字形,如等
试卷第2页,共25页
◆1.圆柱的概念
如图,圆柱可以看做由一个矩形绕它的一条边(BC)旋转一周,其余各边所成的面围成
的几何体.AB,CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆.AD旋转所成
的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线.
◆2.圆柱的表面展开图
“”
如果沿圆柱的任意一条母线把圆柱的侧面剪开,铺平,那么就得到圆柱的侧面展
.rl.
开图一般地,一个底面半径为,母线长为的圆柱的表面展开图如图所示
◆3.圆柱的侧面积和全面积
S=2πrlSSS2πrlπr2
圆柱的侧面积侧;圆柱的全面积全=侧+底=+
SSSπrlπr2rl.
圆锥的全面积公式:全=侧+底=+(其中为底面半径,为高)
◆1.圆锥的概念
如图,圆锥可以看做将一个直角三角形绕它的一条直角边(AC)旋转一周,它的其余各边
.BCAB
所成的面围成的一个几何体直角边旋转所成的面就是圆锥的底面,斜