第二章、特殊三角形21~26单元测试.docx
文本预览下载声明
第二章、特殊三角形2.1 -2.6单元测试
姓名 班级
一、选择题(每题3分,共30分)
已知,如图,CD是RtZXABC的斜边AB上的中线,若匕A=3O。,则ZBCD为 ( )
50° B. 60° C. 65° D. 70°
如图,£Z\ABC中,AB=AC, DE是AB的垂直平分线,Z\BCE的周长为12, BC=5,
则AC的长为(A. 6D第1题)A第1题
则AC的长为(
A. 6
D
第1题
)
A
第1题
3.已知:如图,
△ABC 为 RtZ\,
ZC=90°, ZB=50°,
若用图中的虚线剪去匕A,
则 ZHZ2= ( )
A. 200°220°240°D. 260°
A. 200°
220°
240°
D. 260°
如图,是一个4x4的方格图,点A,点B都在格点上,要求在格点上再找到一点C,使 △ABC为等腰Rt△,则选择的点C有 ()
A. 2个 B. 4个 C?6个 D. 8个
如图,AABC中,匕BAC=90。,AD±BC于D, DE1AB于E,则图中与NC相等 的角有 ()
A?1个 B?2个 C. 3个 D. 4个
如图,在AABC中,ZB=ZC, AD是BC边上的中线,E为AB的中点,AC=6, 则 DE= ()
A. 2B. 3C. 4D. 67.
A. 2
B. 3
C. 4
D. 6
7.如图,在AABC 中,AB=AC,
ZBAC=4ZB, AD±AC,垂足为 A,则
ZADC的度
数为
B.
45°
C. 60°
D.
75°
A. 30°
C
8.如图6,在ZXABC中,AB=AC, BD1AC于D,如果ZA=70°,那么NDBC的度数为()
A、20°
B、30°
C、35°
D、45°
9.如图,△ABC,
ZB=ZC, FD±BC, DE±AB, ZAFD=140°,那么 ZFDE 的度数为(
10.
二、
11.
12.
13.
14.
15.
16.
17.
18.
三、
A、50°
B、60°
C、40°
D、70°
在 AABC 中,AB=AC.匕4 = 70。,
/OBC=/OCA,则匕BOC的度数为(
A. 140°
B. 110°
C. 125°
D. 115 °
填空题(每题3分,共24分)
在Z^ABC 中,ZC=90°, ZA=48°,则匕B= .
在 RtAABC 中,ZACB=90°, D 是 AB 的中点,CD=4cm,贝lj AB=
AABC 中,ZA=ZB=2ZC,那么匕C二 。
cm.
直角三角形的两个锐角之差是12°,则较大的一个锐角的度数是 ?
如图,CE是RtAABC斜边AB±的中线,CD是AB边上的高,ZA=40°,则 ZDCE=
A
第4跋
B d
如图,h〃12,AABC为等边三角形,ZABD=36。,则ZACE= △ABC 中,ZA=70° ,
如图,已知匕4=15。,
解答题(共46分)
19(本题满分6分)如图,
当匕B二
时,AABC是等腰三角形.
AB=BC=CD=DE=EF,那么ZF切V的度数是
)
把直角三角形分成4个面积相等的直角三角形,用两种不同的方
法,并标上相应的线段或角度标志.
20(本题满分8分)、如图所示,已知AABC中,点A在DE上,CD±DE, BE±DE,垂足 分别是点D, E, CD=AE,且匕CAD=ZABE?求证、ZXABC是等腰直角三角形.
B
B
21(本题满分 8 分).如图,RtAABC 和 RtZSABD 中,ZACB=ZADB=RtZ, E 是 BC 边上
的中点。请你说明CE=DE的理由。
的中点。请你说明CE=DE的理由。
E
22 (本题满分8分).如图R是C4延长线上的点,AB=AC, RP垂直BC,求证、△ARQ是等 腰三角形.
23 (本题满分8分).如图,在等边ZXABC中,D是AC的中点,E是BC延长线上一点,且CE=CD,
请说明DB=DE的理由。
24(本题8分)已知:如图所示,在ZkABC中,ZABC=45°, CDLAB于点。,BE平分
ZABC,且BELAC于点E,与C。相交于点F H是边的中点,连接DH与荫相
交于点G.(1)求证:
交于点G.
(1)求证:BF=AC;
(2)求证:DG=DF。
B H C
25附加题(本题满分10分).如图,在RtAABC中,ZA=90°, AB=AC, D为BC的中点, E, F分别为AB, AC±的点,且BE=AF,则ZXDEF为等腰直角三角形,请说明理由.
显示全部