文档详情

答案--二次函数-平行四边形存在性问题.doc

发布:2018-09-27约1.28万字共27页下载文档
文本预览下载声明
二次函数中的平行四边形问题 类型一:已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足) 1.【08湖北十堰】已知抛物线与轴的一个交点为A(-1,0),与y轴的正半轴交于点C. ⑴直接写出抛物线的对称轴,及抛物线与轴的另一个交点B的坐标; ⑵当点C在以AB为直径的⊙P上时,求抛物线的解析式; ⑶坐标平面内是否存在点,使得以点M和⑵中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由. 解:⑴对称轴是直线:,点B的坐标是(3,0). ……2分 说明:每写对1个给1分,“直线”两字没写不扣分. ⑵如图,连接PC,∵点A、B的坐标分别是A(-1,0)、B (3,0), ∴AB=4.∴ 在Rt△POC中,∵OP=PA-OA=2-1=1, ∴ ∴b= ………………………………3分 当时, ∴  ………………………………4分 ∴ ………………5分 ⑶存在.……………………………6分 理由:如图,连接AC、BC.设点M的坐标为. ①当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB. 由⑵知,AB=4,∴|x|=4,. ∴x=±4.∴点M的坐标为.…9分 说明:少求一个点的坐标扣1分. ②当以AB为对角线时,点M在x轴下方. 过M作MN⊥AB于N,则∠MNB=∠AOC=90°. ∵四边形AMBC是平行四边形,∴AC=MB,且AC∥MB. ∴∠CAO=∠MBN.∴△AOC≌△BNM.∴BN=AO=1,MN=CO=. ∵OB=3,∴0N=3-1=2. ∴点M的坐标为. ……………………………12分 说明:求点M的坐标时,用解直角三角形的方法或用先求直线解析式, 然后求交点M的坐标的方法均可,请参照给分. 综上所述,坐标平面内存在点,使得以点A、B、C、M为顶点的四边形是平行四边形.其坐标为. 说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分。 练习.【09浙江湖州】已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点. (1)填空:试用含的代数式分别表示点与的坐标,则; (2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积; (3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由 第( 第(2)题 x y B C O D A M N N′ x y B C O A M N P1 P2 备用图 (1).……………4分 直线AM y= -X+a 与直线 解方程组的得N坐标 (2)由题意得点与点′关于轴对称, ,将′的坐标代入 得, (不合题意,舍去),.……………2分 ,点到轴的距离为3. , ,直线的解析式为, 它与轴的交点为点到轴的距离为. .……………2分 (3)当点在轴的左侧时,若是平行四边形,则平行且等于, 把向上平移个单位得到,坐标为,代入抛物线的解析式, 得: (不舍题意,舍去),, .……………2分 当点在轴的右侧时,若是平行四边形,则与互相平分, . 与关于原点对称,, 将点坐标代入抛物线解析式得:, (不合题意,舍去),,.……………2分 存在这样的点或,能使得以为顶点的四边形是平行四边形. 类型:已知两个定点,再找两个点构成平行四边形 ①确定两定点连接的线段为一边,则两动点连接的线段应和已知边平行且相等 1.【09福建莆田】已知,如图抛物线与y轴交于C点,与x轴交于A、B两点,A点在B点左侧。点B的坐标为(1,0),OC=30B. (1)求抛物线的解析式; (2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值: (3)若点E在x轴上,点P在抛物线上。是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由. 解:(1)∵对称轴………1分 又∵OC=3OB=3,, ∴C(0,-3)………2分 方法一:把B(1,0)、C(0,-3)代入得: 解得: ∴…………………4分 方法二:∵B(1,0),∴A(-4,0) 可令 把C(0,-3)代入得: ∴………………4分 (2)方法一:过点D作DM∥y轴分别交线段AC和x轴于点M、N。 ∵ =……………5分 ∵A(-4,0),C(0,-3) 设直线AC的解析式为 代入求得:……………6分 令, …………7分 当时,DM有最大值3 此时四边形ABCD面积有最大值。…………8分 方法二:过点D作DQ⊥y轴于Q,过点C作∥x轴交抛物线于,从图象中可判断当D在下方的抛物线上运动时,四边形ABCD才有最大值。
显示全部
相似文档