平面向量与空间向量知识点及理科高考试题.doc
文本预览下载声明
PAGE
PAGE 1
平面向量与空间向量知识点及理科高考试题
考试内容要求:
(一)、平面向量:
(1)平面向量的实际背景及基本概念: ①了解向量的实际背景。 ②理解平面向量的概念,理解两个向量的相等含义。 ③理解向量的几何表示.
(2)向量的线性运算: ①掌握向量加法、减法的运算,并理解其几何意义. ②掌握向量数乘的运算及其几何意义,理解两个向量共线的含义. ③了解向量线性运算的性质及其几何意义.
(3)平面向量的基本定理及坐标表示: ①了解平面向量的基本定理及其意义。
②掌握平面向量的正交分解及其坐标表示. ③会用坐标表示平面向量的加法、减法与数乘运算.④理解用坐标表示的平面向量共线的条件.
(4)平面向量的数量积: ①理解平面向量数量积的含义及其物理意义.②了解平面向量的数量积与向量投影的关系. ③掌握数量积的坐标表达式,会进行平面向量数量积的运算. ④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
(5)向量的应用: ①会用向量方法解决某些简单的平面几何问题.②会用向量方法解决简单的力学问题与其他一些实际问题.
(二)、(1)空间向量及其运算:①了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示。②掌握空间向量的线性运算及其坐标表示。③掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。
(2)空间向量的应用:①理解直线的方向向量与平面的法向量。②能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系。③能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)。④能用向量方法解决直线与直线、直线与平面、平面与平面的夹角计算问题,了解向量方法在研究立体几何问题中的应用。
二、知识要点归纳:
(一)、平面向量
§2.1.1、向量的物理背景与概念
1、 了解四种常见向量:力、位移、速度、加速度. 2、 既有大小又有方向的量叫做向量.
§2.1.2、向量的几何表示
1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.
2、 向量的大小,也就是向量的长度(或称模),记作;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.
3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.
§2.1.3、相等向量与共线向量
1、 长度相等且方向相同的向量叫做相等向量.
§2.2.1、向量加法运算及其几何意义
1、 三角形加法法则和平行四边形加法法则.
2、≤.
§2.2.2、向量减法运算及其几何意义
1、 与长度相等方向相反的向量叫做的相反向量. 2、 三角形减法法则和平行四边形减法法则.
§2.2.3、向量数乘运算及其几何意义
1、 规定:实数与向量的积是一个向量,这种运算叫做向量的数乘.记作:,它的长度和方向规定如下:
⑴,
⑵当时, 的方向与的方向相同;当时, 的方向与的方向相反.
2、 平面向量共线定理:向量与 共线,当且仅当有唯一一个实数,使.
§2.3.1、平面向量基本定理
1、 平面向量基本定理:如果是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数,使.
§2.3.2、平面向量的正交分解及坐标表示
1、 .
§2.3.3、平面向量的坐标运算
设,则: ⑴, ⑵,
⑶,⑷.
2、 设,则: .
§2.3.4、平面向量共线的坐标表示1、设,则
⑴线段AB中点坐标为, ⑵△ABC的重心坐标为.
§2.4.1、平面向量数量积的物理背景及其含义
1、 . 2、 在方向上的投影为:.
3、 . 4、 . 5、 .
§2.4.2、平面向量数量积的坐标表示、模、夹角
1、 设,则:
⑴ ⑵
⑶ ⑷
2、 设,则:.
两向量的夹角公式
4、点的平移公式
平移前的点为(原坐标),平移后的对应点为(新坐标),平移向量为, 则
函数的图像按向量平移后的图像的解析式为
§2.5.1、平面几何中的向量方法
§2.5.2、向量在物理中的应用举例
知识链接:空间向量
空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.
高考试题(2010―2014)
一、选择题(共 39 题)
1、(2010全国2)中,点在上,平方.若,,,,则
(A) (B) (C) (D) 答案:B
2.(2011全国)设向量a,b,c满足= =1,=,=,则
最大值等于
A.2 B
显示全部