[胡平面向量知识点总结.doc
文本预览下载声明
5.1 平面向量
一.向量的基本概念与基本运算
①向量:既有大小又有方向的量向量一般用……来表示,几何表示法 ,;坐标表示法 向量的大小即向量的模(长度),记作||即向量的大小,记作||
向量不能比较大小,但向量的模可以比较大小.
②零向量:长度为0的向量,记为,其方向是任意的,与任意向量平行零向量=||=0
③单位向量:模为1个单位长度的向量
向量为单位向量||=1
④平行向量(共线向量):方向相同或相反的非零向量记作∥由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量
⑤相等向量:长度相等且方向相同的向量,记为大小相等,方向相同
2向量加法
求两个向量和的运算叫做向量的加法
设,则+==
(1);(2)向量加法满足交换律与结合律;
向量加法有“三角形法则”与“平行四边形法则”:
(1)用平行四边形法则时,(作图)
(2) 三角形法则
,但这时必须“首尾相连”.
3向量的减法
① 相反向量:与长度相等、方向相反的向量,叫做的相反向量
记作,零向量的相反向量仍是零向量
关于相反向量有: (i)=; (ii) +()=()+=;
(iii)若、是互为相反向量,则=,=,+=
②向量减法:向量加上的相反向量叫做与的差,
③作图法:
4实数与向量的积:
①实数λ与向量的积是一个向量,记作λ,它的长度与方向规定如下:
(Ⅰ);
(Ⅱ)当时,λ的方向与的方向相同;当时,λ的方向与的方向相反;当时,,方向是任意的
5两个向量共线定理:
向量与非零向量共线有且只有一个实数,使得=
6平面向量的基本定理:
如果是一个平面内的两个不共线向量,那么对这一平面内的任一向量,有且只有一对实数使:,其中不共线的向量叫做表示这一平面内所有向量的一组基底
例1 给出下列命题:
① 若||=||,则=;
② 若A,B,C,D是不共线的四点,则是四边形ABCD为平行四边形的充要条件;
③ 若=,=,则=,
④=的充要条件是||=||且//;
⑤ 若//,//,则//,
其中正确的序号是
例2 设A、B、C、D、O是平面上的任意五点,试化简:
①,② ③
例3设非零向量、不共线,=k+,=+k (k?R),若∥,试求k
二.平面向量的坐标表示
1平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量作为基底由平面向量的基本定理知,该平面内的任一向量可表示成,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y)。
(1)相等的向量坐标相同,坐标相同的向量是相等的向量
(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关
2平面向量的坐标运算:
若,则
若,则
若=(x,y),则=(x, y)
若,则
若,则
若,则
3向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质
运算类型 几何方法 坐标方法 运算性质 向
量
的
加
法 1平行四边形法则
2三角形法则
向
量
的
减
法 三角形法则
向
量
的
乘
法 是一个向量,
满足:
0时,与同向;
0时,与异向;
=0时, =
∥ 向
量
的
数
量
积 是一个数
或时,
=0
且时,
,
例1 已知向量,,且,求实数的值
、(2012·郑州月考)设向量a=(m,1),b=(1,m),如果a与b共线且方向相反,则m的值为( ).
A.-1 B.1 C.-2 D.2
3、若a,b,c为任意向量,m∈R,则下列等式不一定成立的是( ).
A.(a+b)+c=a+(b+c) B.(a+b)·c=a·c+b·c
C.m(a+b)=ma+mb D.(a·b)·c=a·(b·c)
三.平面向量的数量积
1两个向量的数量积:
已知两个非零向量与,它们的夹角为,则·=︱︱·︱︱cos
叫做与的数量积(或内积) 规定
2向量的投影:︱︱cos=∈R,称为向量在方向上的投影投影的绝对值称为射影
3数量积的几何意义: ·等于的长度与在方向上的投影的乘积
4向量的模与平方的关系:
5乘法公式成立:
;
6平面向量数量积的运算律:
①交换律成立:
②对实数的结合律成立:
③分配律成立:
特别注意:(1)结合律不成立:;
(2)消去律不成立不能得到
(3)=0不能得到=或=
7两个向量的数量积的坐标运算:
已知两个向量,则·=
8向量的夹角:已知两个非零向量与,作=, =,则∠AOB= ()叫做向量与的夹角
co
显示全部