文档详情

[胡平面向量知识点总结.doc

发布:2017-01-20约3.43千字共10页下载文档
文本预览下载声明
5.1 平面向量 一.向量的基本概念与基本运算 ①向量:既有大小又有方向的量向量一般用……来表示,几何表示法 ,;坐标表示法 向量的大小即向量的模(长度),记作||即向量的大小,记作|| 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为,其方向是任意的,与任意向量平行零向量=||=0 ③单位向量:模为1个单位长度的向量 向量为单位向量||=1 ④平行向量(共线向量):方向相同或相反的非零向量记作∥由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:长度相等且方向相同的向量,记为大小相等,方向相同 2向量加法 求两个向量和的运算叫做向量的加法 设,则+== (1);(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,(作图) (2) 三角形法则 ,但这时必须“首尾相连”. 3向量的减法 ① 相反向量:与长度相等、方向相反的向量,叫做的相反向量 记作,零向量的相反向量仍是零向量 关于相反向量有: (i)=; (ii) +()=()+=; (iii)若、是互为相反向量,则=,=,+= ②向量减法:向量加上的相反向量叫做与的差, ③作图法: 4实数与向量的积: ①实数λ与向量的积是一个向量,记作λ,它的长度与方向规定如下: (Ⅰ); (Ⅱ)当时,λ的方向与的方向相同;当时,λ的方向与的方向相反;当时,,方向是任意的 5两个向量共线定理: 向量与非零向量共线有且只有一个实数,使得= 6平面向量的基本定理: 如果是一个平面内的两个不共线向量,那么对这一平面内的任一向量,有且只有一对实数使:,其中不共线的向量叫做表示这一平面内所有向量的一组基底 例1 给出下列命题: ① 若||=||,则=; ② 若A,B,C,D是不共线的四点,则是四边形ABCD为平行四边形的充要条件; ③ 若=,=,则=, ④=的充要条件是||=||且//; ⑤ 若//,//,则//, 其中正确的序号是 例2 设A、B、C、D、O是平面上的任意五点,试化简: ①,② ③ 例3设非零向量、不共线,=k+,=+k (k?R),若∥,试求k 二.平面向量的坐标表示 1平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量作为基底由平面向量的基本定理知,该平面内的任一向量可表示成,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y)。 (1)相等的向量坐标相同,坐标相同的向量是相等的向量 (2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关 2平面向量的坐标运算: 若,则 若,则 若=(x,y),则=(x, y) 若,则 若,则 若,则 3向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质  运算类型 几何方法 坐标方法 运算性质 向 量 的 加 法 1平行四边形法则 2三角形法则 向 量 的 减 法 三角形法则 向 量 的 乘 法 是一个向量, 满足: 0时,与同向; 0时,与异向; =0时, = ∥ 向 量 的 数 量 积 是一个数 或时, =0 且时, , 例1 已知向量,,且,求实数的值 、(2012·郑州月考)设向量a=(m,1),b=(1,m),如果a与b共线且方向相反,则m的值为(  ). A.-1 B.1 C.-2 D.2 3、若a,b,c为任意向量,m∈R,则下列等式不一定成立的是(  ). A.(a+b)+c=a+(b+c) B.(a+b)·c=a·c+b·c C.m(a+b)=ma+mb D.(a·b)·c=a·(b·c) 三.平面向量的数量积 1两个向量的数量积: 已知两个非零向量与,它们的夹角为,则·=︱︱·︱︱cos 叫做与的数量积(或内积) 规定 2向量的投影:︱︱cos=∈R,称为向量在方向上的投影投影的绝对值称为射影 3数量积的几何意义: ·等于的长度与在方向上的投影的乘积 4向量的模与平方的关系: 5乘法公式成立: ; 6平面向量数量积的运算律: ①交换律成立: ②对实数的结合律成立: ③分配律成立: 特别注意:(1)结合律不成立:; (2)消去律不成立不能得到 (3)=0不能得到=或= 7两个向量的数量积的坐标运算: 已知两个向量,则·= 8向量的夹角:已知两个非零向量与,作=, =,则∠AOB= ()叫做向量与的夹角 co
显示全部
相似文档