文档详情

第80课时:第九章直线、平面、简单几何体——空间的距离.doc

发布:2017-09-21约1.51千字共5页下载文档
文本预览下载声明
本资料来源于《七彩教育网》 课题:空间的距离 一.复习目标: 1.理解点到直线的距离的概念,掌握两条直线的距离,点到平面的距离,直线和平面的距离,两平行平面间的距离; 2.掌握求空间距离的常用方法和各距离之间的相互转化. 二.知识要点: 1.点到平面的距离: . 2.直线到平面的距离: . 3.两个平面的距离: . 4.异面直线间的距离: . 三.课前预习: 1.在中,,所在平面外一点到三顶点的距离都是,则到平面的距离是 ( ) 2.在四面体中,两两垂直,是面内一点,到三个面的距离分别是,则到的距离是 ( ) 3.已知矩形所在平面,,,则到的距离为,到的距离为. 4.已知二面角为,平面内一点到平面的距离为,则到平面的距离为 2 . 四.例题分析: 例1.已知二面角为,点和分别在平面和平面内,点在棱上,,(1)求证:;(2)求点到平面的距离;(3)设是线段上的一点,直线与平面所成的角为,求的长 (1)证明:作于,连接, ∵,, ∴,∴, 平面,平面, ∴. 解:(2)作于, ∵平面,∴, ∴,是点到平面的距离,由(1)知, ∴. ∴点到平面的距离为. (2)连接,∵,与平面所成的角为, ,, ∴,∵,,为正三角形, 是中点,∴是中点,∴. 小结:求点到平面的距离关键是寻找点到的垂线段. 例2.在直三棱柱中,底面是等腰直角三角形,,侧棱,分别是,与的中点,点在平面上的射影是的重心,(1)求与平面所成角的正弦值;(2)求点到平面的距离. 解:建立如图的空间直角坐标系,设, 则,,,, ∵分别是,与的中点, ∴,∵是的重心, ,∴,, ,∵平面, 得,且与平面所成角,, ,, (2)是的中点,到平面的距离等于到平面的距离的两倍, ∵平面,到平面的距离等于. 小结:根据线段和平面的关系,求点到平面的距离可转化为求到平面的距离的两倍. 例3.已知正四棱柱,点为的中点,点为的中点,(1)证明:为异面直线的公垂线; (2)求点到平面的距离. 解:(1)以分别为轴建立坐标系, 则,,,, ,,, ∴, ∴为异面直线的公垂线. 设是平面的法向量, ∵, ∴,,, 点到平面的距离. 小结:由平面的法向量能求出点到这个平面的距离. 五.课后作业: 1.已知正方形所在平面,,点到平面的距离为,点到平面的距离为,则 ( ) 2.把边长为的正三角形沿高线折成的二面角,点到的距离是( ) 3.四面体的棱长都是,两点分别在棱上,则与的最短距离是( ) 4.已知二面角为,角,,则到平面的距离为 . 5.已知长方体中,,那么直线到平面的距离是 . 6.如图,已知是边长为的正方形,分别是的中点,,,(1)求证:;(2)求点到面的距离. 7.在棱长为1的正方体中, (1)求:点到平面的距离;(2)求点到平面的距离; (3)求平面与平面的距离;(4)求直线到的距离. 本资料来源于《七彩教育网》 第九章 直线、平面、简单几何体——第80课时:空间的距离
显示全部
相似文档