1.2.2双曲线——1.双曲线的定义与标准方程.ppt
文本预览下载声明
* 1. 椭圆的定义 和 等于常数 2a ( 2a|F1F2|0) 的点的轨迹. 平面内与两定点F1、F2的距离的 2. 引入问题: 差 等于常数 的点的轨迹是什么呢? 平面内与两定点F1、F2的距离的 复习 双曲线图象 拉链画双曲线 |MF1|+|MF2|=2a( 2a|F1F2|0) ①如图(A), |MF1|-|MF2|=|F2F|=2a ②如图(B), 上面 两条合起来叫做双曲线 由①②可得: | |MF1|-|MF2| | = 2a (差的绝对值) |MF2|-|MF1|=|F1F|=2a ① 两个定点F1、F2——双曲线的焦点; ② |F1F2|=2c ——焦距. (1)2a2c ; o F 2 F 1 M 平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于︱F1F2︱)的点的轨迹叫做双曲线. (2)2a 0 ; 双曲线定义 思考: (1)若2a=2c,则轨迹是什么? (2)若2a2c,则轨迹是什么? 说明 (3)若2a=0,则轨迹是什么? | |MF1| - |MF2| | = 2a (1)两条射线 (2)不表示任何轨迹 (3)线段F1F2的垂直平分线 F 2 F 1 M x O y 求曲线方程的步骤: 双曲线的标准方程 1. 建系. 以F1,F2所在的直线为x轴,线段F1F2的中点为原点建立直角坐标系 2.设点. 设M(x , y),则F1(-c,0),F2(c,0) 3.列式 |MF1| - |MF2|=±2a 4.化简 此即为焦点在x轴上的双曲线的标准方程 F 2 F 1 M x O y O M F2 F1 x y 若建系时,焦点在y轴上呢? 看 前的系数,哪一个为正,则在哪一个轴上 2、双曲线的标准方程与椭圆的标准方程有何区别与联系? 1、如何判断双曲线的焦点在哪个轴上? 问题 a.b.c的关系 焦 点 方 程 定 义 F(±c,0) F(±c,0) a0,b0,但a不一定大于b,c2=a2+b2 ab0,a2=b2+c2 双曲线与椭圆之间的区别与联系 ||MF1|-|MF2||=2a |MF1|+|MF2|=2a 椭 圆 双曲线 F(0,±c) F(0,±c) 变式2答案 课本例2 写出适合下列条件的双曲线的标准方程 练习 1.a=4,b=3,焦点在x轴上; 2.焦点为(0,-6),(0,6),过点(2,5) 3.a=4,过点(1, ) 例2:如果方程 表示双曲线,求m的取值范围. 解: 方程 表示焦点在y轴双曲线时, 则m的取值范围_____________. 思考: 使A、B两点在x轴上,并且点O与线段AB的中点重合 解: 由声速及在A地听到炮弹爆炸声比在B地晚2s,可知A地与爆炸点的距离比B地与爆炸点的距离远680m.因为|AB|680m,所以爆炸点的轨迹是以A、B为焦点的双曲线在靠近B处的一支上. 例3.(课本第54页例)已知A,B两地相距800m,在A地听到炮弹爆炸声比在B地晚2s,且声速为340m/s,求炮弹爆炸点的轨迹方程. 如图所示,建立直角坐标系xOy, 设爆炸点P的坐标为(x,y),则 即 2a=680,a=340 x y o P B A 因此炮弹爆炸点的轨迹方程为 答:再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时间差,可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定爆炸点的准确位置.这是双曲线的一个重要应用. P B A C x y o 几何画板演示第2题的轨迹 练习第1题详细答案 本课小结 解: 在△ABC中,|BC|=10, 故顶点A的轨迹是以B、C为焦点的双曲线的左支 又因c=5,a=3,则b=4 则顶点A的轨迹方程为 * *
显示全部