第十一章时间序列计量经济模型..doc
文本预览下载声明
*第十章 时间序列计量经济模型
引子:
是真回归还是伪回归?
在经典的回归分析中,通常的做法是:首先采用普通最小二乘法(OLS)对回归模型进行估计,然后根据可决系数R2或F检验统计量值的大小来判定变量之间的相依程度,根据回归系数估计值的t统计量对系数的显著性进行判断,最后在回归系数显著不为零的基础上对回归系数估计值给予经济解释。
为了分析美国的个人可支配总收入(I)与个人消费总支出(E)的关系,遵照以上作法,收集了1970年至1991年的季度时间序列数据,用OLS法作E关于I的线性回归,得到如下结果:
t=(-7.4809) (119.8711)
从回归结果来看,非常高,个人可支配总收入I的回归系数t统计量也非常大,边际消费倾向符合经济假设。
(资料来源:古扎拉蒂《计量经济学》下册,第719页,中国人民大学出版社)
凭借经验判断,这个模型的设定是好的,所用数据也是可靠的,样本容量很充分,这应是满意的结果。准备将这个计量结果用于经济结构分析和经济预测。
可是有人提出,这个回归结果可能是虚假的!可能只不过是一种“伪回归”!如果真是这样,将所估计的模型直接用于经济结构分析和预测,“就要千万小心!“。
这里用时间序列数据进行的回归,究竟是真回归还是伪回归呢?为什么模型、样本、数据、检验结果都很理想,却可能得到“伪回归”的结果呢?
时间序列数据被广泛地运用于计量经济研究。经典时间序列分析和回归分析有许多假定前提,如序列的平稳性、正态性等,,如果直接将经济变量的时间序列数据用于建模分析,实际上隐含了这些假定。在这些假定成立的条件下,进行的t、F、等检验才具有较高的可靠度。但是,越来越多的经验证据表明,经济分析中所涉及的大多数时间序列是非平稳的。那末,如果直接将非平稳时间序列当作平稳时间序列来进行分析,会造成什么不良后果?如何判断一个时间序列是否为平稳序列?当我们在计量经济分析中涉及到非平稳时间序列时,应作如何处理呢?这就是本章要讨论的基本内容。
第一节 时间序列计量经济分析的基本概念
一、伪回归问题
经典计量经济学建模过程中,通常假定经济时间序列是平稳的,而且主要以某种经济理论或对某种经济行为的认识来确立计量经济模型的理论关系形式,借此形式进行数据收集、参数估计以及模型检验,这是20世纪70年代以前计量经济学的主导方法。然而,这种方法所构建的计量经济模型在20世纪70年代出现石油危机后引起的经济动荡面前却失灵了。这里的失灵不是指这些模型没能预见石油危机的出现,而是指这些模型无法预计石油危机的振荡对许多基本经济变量的动态影响。因此引起了计量经济学界对经典计量经济学方法论的反思,并将研究的注意力转向宏观经济变量非平稳性对建模的影响。人们发现,由于经济分析中所涉及的经济变量数据基本上是时间序列数据,而大多数经济时间序列是非平稳的,如果直接将非平稳时间序列当作平稳时间序列进行回归分析,则可能会带来不良后果,如伪回归问题。
所谓“伪回归”,是指变量间本来不存在有意义的关系,但回归结果却得出存在有意义关系的错误结论。经济学家早就发现经济变量之间可能会存在伪回归现象,但在什么条件下会产生伪回归现象,长期以来无统一认识。直到20世纪70年代,Grange、Newbold研究发现,造成“伪回归”的根本原因在于时间序列变量的非平稳性。他们用Monte Carlo模拟方法研究表明,如果用传统回归分析方法对彼此不相关联的非平稳变量进行回归,t检验值和F检验值往往会倾向于显著,从而得出“变量相依”的“伪回归结果”。
因此,在利用回归分析方法讨论经济变量有意义的经济关系之前,必须对经济变量时间序列的平稳性与非平稳性进行判断。如果经济变量时间序列是非平稳的,则需要寻找新的处理方法。20世纪80年代发展起来的协整理论就是处理非平稳经济变量关系的行之有效的方法。该理论自从诞生以来,受到众多经济学家的重视,并广泛运用于对实际经济问题的研究。
二、随机过程的概念
在概率论和数理统计中,随机变量是分析随机现象的有力工具。对于一些简单的随机现象,一个随机变量就足够了,如候车人数,某单位一天的总用水量等。对于一些复杂的随机现象,用一个随机变量来描述就不够了,而需要用若干个随机变量来加以刻画。例如平面上的随机点,某企业一天的工作情况(产量、次品率、耗电量、出勤人数等)都需要用多个随机变量来刻画。
还有些随机现象,要认识它必须研究其发展变化过程,这一类随机现象不能只用一个或多个随机变量来描述,而必须考察其动态变化过程,随机现象的这种动态变化过程就是随机过程。例如,某一天电话的呼叫次数ξ,它是一个随机变量。若考察它随时间t变动的情况,则需要考察依赖于时间t的随机变量ξt,{ξt}就
显示全部