文档详情

人教版小学六年级上册数学全册导学案.doc

发布:2021-07-26约2.52万字共48页下载文档
文本预览下载声明
精品 Word 可修改 欢迎下载 精品 Word 可修改 欢迎下载 精品 Word 可修改 欢迎下载 六年级上册 数学教案 学习内容 分数乘法(一) 第 1 课时 课型 新 授 学习目标 知识与技能 结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。 过程与方法 借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。 情感态度与价值观 在探索与交流活动中培养观察、推理的能力。 教学重点 理解分数乘整数的意义,掌握分数乘整数的计算法则。 教学难点 理解分数乘整数的算理。 教具运用 教学过程 一、复习导入。   1、5个12是多少?   用加法算:12+12+12+12+12   用乘法算:12×5 问:12×5算式的意义是什么? 2.计算:   问:这两个算式有什么特点?应该怎样计算?   教师总结:整数乘法的意义,就是求几个相同加数的和的简便运算。同分母分数加法计算法则是分子相加作分子,分母不变。   通过将算式:EQ \F(3,10)+EQ \F(3,10)+EQ \F(3,10)改写成乘法算式,引出课题。 二、探究分数乘整数。 分数乘整数的意义。 (1)谈话并提问:今天是小新的10岁生日。妈妈买来了一个大蛋糕。小新和爸爸、妈妈一起分享了生日蛋糕。他们每人吃 EQ \F(2,9) 个。你能提出一个数学问题吗?(预设:3个人一共吃多少个?) (2)提出要求:你能解决这个问题吗?请你在草稿本上解决这个问题。请你画一画,算一算,争取让同学们看清你的想法。X 引导学生看图,理解“他们每人吃 EQ \F(2,9) 个”,就是把整个蛋糕看作单位“1”。把这个圆平均分成9份,其中2份就表示一个人所吃蛋糕的大小,就是 EQ \F(2,9) 个。那么三个人一共吃的就是求3个 EQ \F(2,9) 是多少? 追问:你们用画示意图的方法将问题分析得很清楚,那你们是怎样列式的呢?说说你的想法。 预设:① EQ \F(2,9) + EQ \F(2,9) + EQ \F(2,9) =EQ \F(2+2+2,9)=EQ \F(6,9)=EQ \F(2,3)(个)表示3个 EQ \F(2,9) 连加的和是多少。 ② EQ \F(2,9) ×3=EQ \F(2X3,9)=EQ \F(6,9)=EQ \F(2,3)(个)也表示3个 EQ \F(2,9) 连加的和是多少。 追问:不同的算式都表示“3个 EQ \F(2,9) 连加的和是多少”由此你有什么发现吗?(预设:用乘法计算更简便一些。) 分数乘法和整数乘法一样,也是求几个相同加数和的简便运算,所不同的是相同加数是分数。 2、探究分数乘整数的计算方法。 (1)引导学生观察算式 EQ \F(2,9) ×3=EQ \F(2X3,9)=EQ \F(6,9)=EQ \F(2,3)(个)并提问。请你们看看这个算式,你能理解它是怎么计算的吗? (2)引导学生再次观察算式并提出问题:这个算式是先计算再约分的,你有不同的想法吗? 预设: 1 1 EQ \F(2,9) ×3==EQ \F(2,3) 或 EQ \F(2,9) ×3= EQ \F(2,9) ×3=EQ \F(2,3) 3 3 引导学生对比观察这几个算式并提出问题:通过比较算式你有什么发现? 小结:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(分母与整数能约分的先约分再计算) 3、练习。 (1)计算EQ \F(1,12)×4 (2)教材第2页“做一做”第1题。 三、创设情境,探究整数乘分数 1、借助情境理解整数乘分数的意义。 1桶水有12L。3桶共多少L?EQ \F(1,2)桶是多少L?EQ \F(1,4)桶是多少L? (1)理解题意,明确题中的数量关系:单位量×数量=总量 (2)根据题意列出算式: 3桶水共多少L?12×3 EQ \F(1,2)桶是多少L?12×EQ \F(1,2) EQ \F(1,4)桶是多少L?12×EQ \F(1,4) (3)探究每道算式的意义 12×3表示求3个12L,也就是求12L的3倍是多少。 EQ \F(1,2)是一半,12×EQ \F(1,2)表示12L的一半,也就是求12L的EQ \F(1,2)是多少。 12×EQ \F(1,4)表示求12L的EQ \F(1,4)是多少。 发现:一个数乘分数表示的是求这个数的几分之几是多少。 (4)解决问题。 2、练习: EQ \F(2,9) ×6=12× EQ \F(3,4) =EQ \F(3,10)×4= 观察巡视学生
显示全部
相似文档