自動控制原理与matlab实验.doc
文本预览下载声明
建立如下系统的传递函数模型。
G1(s)=
2.建立以上系统的零极点模型。
3.建立以下系统的零极点模型,并转换成多项式模型。
G2(s)=
4.求以上系统G1(s),G2(s)的部分分式展开。
5.分别求以上系统G1(s),G2(s)
6.将以上系统G3(s)展开成部分分式。 实 验 过 程 1.
num=[1 -38.7 101 -71.5 63.1 562.39];
den=[1 2 5 -31 51 22.5 0 311.21];
G1=tf(num,den)
Transfer function:
s^5 - 38.7 s^4 + 101 s^3 - 71.5 s^2 + 63.1 s + 562.4
--------------------------------------------------------
s^7 + 2 s^6 + 5 s^5 - 31 s^4 + 51 s^3 + 22.5 s^2 + 311.2
2.
G2=zpk(G1)
Zero/pole/gain:
(s-35.94) (s-2.959) (s+1.321) (s^2 - 1.118s + 4.004)
-----------------------------------------------------------------
(s+1.501) (s^2 - 3.904s + 5.061) (s^2 - 0.4926s + 2.517)
(s^2 + 4.896s + 16.28)
3.
z=[-0.5-6.02];
p=[0 -1.3 -2.6 -3.5 -4.9 -5.11];
z1=[-0.5 -6.02];
k=36;
G3=zpk(z1,p,k)
Zero/pole/gain:
36 (s+0.5) (s+6.02)
------------------------------------------
s (s+1.3) (s+2.6) (s+3.5) (s+4.9) (s+5.11)
G4=tf(G3)
Transfer function:
36 s^2 + 234.7 s + 108.4
-------------------------------------------------------------
s^6 + 17.41 s^5 + 116.1 s^4 + 367.6 s^3 + 544.8 s^2 + 296.2 s
4.
G1:
[r1,p1,k1]=residue(num,den)
r1 =
1.0414 - 0.9888i
1.0414 + 0.9888i
-0.6729 - 0.1742i
-0.6729 + 0.1742i
-0.2215 - 0.5306i
-0.2215 + 0.5306i
-0.2939
p1 =
-2.4482 + 3.2071i
-2.4482 - 3.2071i
1.9522 + 1.1180i
1.9522 - 1.1180i
0.2463 + 1.5673i
0.2463 - 1.5673i
-1.5006
k1 =
[]
G2:
num2=[36 234.7 108.4];
den2=[1 17.41 116.1 367.6 544.8 296.2 0];
[r2,p2,k2]=residue(num2,den2)
r2 =
0.4433
3.7357 -10.1326i
3.7357 +10.1326i
-11.0028
2.7221
0.3660
p2 =
-5.5657
-4.0235 + 0.4264i
-4.0235 - 0.4264i
-2.4935
-1.3037
0
k2 =
[]
5.
串联:
G5=G1*G4
Transfer function:
显示全部