积分电路.doc
文本预览下载声明
实际积分电路
由图5.4-6B看出,曲线1为理想积分电路的特性曲线,曲线2为实际积分电路的特性曲线。特性曲线2不能保持线性增长,输出电压UO在到达UOM(运放输出电压负向饱和值)以后,如果U1不变,曲线2与曲线1的偏离越来越严重,形成很大的积分误差,甚至不能正常工作。因此图5.4-6A的基本积分电路只能在积分时间很短的情况下工作,这在实际上是不能实用的。其主要原因是电容器C2的漏电和运放本身的输入失调电压与失调电流及其温漂引起的积分漂移,它们和小的输入信号相同,就会被积分,使输出逐渐进入饱和状态。实用的积分电路如图5.4-7A所示。
实际积分电路中的平衡电阻RP=R1在积分电容C2上并上电阻R2,引进直流负反馈,是最简单、有效地抑制失调电压和失调电流造成的积分漂移。但是R2会影响积分的精度,所以适用范围有一定的限制。
对于实际的积分器,运算放大器的增益和带宽是有限的,由图5.4-7A电路可得
式中T1为积分电路时间常数;TC为电容器漏电形成的时间常数;WO为运算放大器主极点的角频率;AUO为运算放大器开环直流电压增益。
上式是四个因子的乘积,第一个因子表征理想积分器的输出电压和输入电压的关系式,其幅频特性曲线如图5.4-7B中的特性曲线1所示,它是一条两端无限延伸的斜率真为-20DB/DEC的直线。第二和第三个因子表示漏电流和由运算放大器有限增益造成低频段误差,第四个因子是由于运算放大器有限带宽造成高频误差。
由图5.4-7B可以看出,只要TC》,W1为实际积分器的正常工作段。这里WC=I/TC是由R2C2所决定的极点的角频率。在正常工作段工作的实际积分电路就几乎是理想的。由于积分电路的电压增益AU(W)随差W升高而下降,所以积分电路一般不考虑高频干扰问题。
图5.4-8所示为实际积分电路的阶跃响应。由于长时间特性反映积分电路对变化缓慢信号的响应。图5.4-8A表明,积分时间越长,误差越大。这是由于AUO的有限和漏电流造成。短时间特性反映积分电路对快速变化的响应。图5.4-8B表明,实际积分电路的响应与理想相比,实际响应有一时间滞后1/AUOWO,它由运放有限带宽而造成。
DSP芯片的定点运算
怎样使用运算放大器
高速积分电路
当密勒积分电路的时间常数T1较小时即在高速运行的情况下,出现了实际输出波波形滞后于理想情况一段时间,解决这一问题的办法是选用通频带较宽的运放或者采用图5.4-11所示的高速积分电路。由于积分是反相使用运放,所以该电路得以采用前馈补偿技术,提高了运放的增益带宽积,使滞后的情况有较显著的改善,输出UO的响应比较迅速,这就是该电路称作高速积分电路的缘故。C4是前馈补偿电容。由R2将C2和C2分离开来。
基于SOC应用的运算放大器IP核设计
运算放大器稳定性:RO何时转变为ZO
近似理想特性的积分电路
电路的功能
?
这种电路可获得与输入电压的时间积分成正比的输出电压。电路进行EO=-(1/R1.C1)∫EIDT的积分运算。如从电路角度来看,它是-6DB/OCT的低通滤波器,FO=1的频率为FO=1/2XR1.C1。
积分电路可用作伺服电路的积分元件,或用来产生线性的斜波、三角波等。
电路工作原理
OP放大器起倒相作用。输入电阻R1把输入电压EI转换成I=EI/E1的电流,它与C1的电流相等时,定电流IF充放电。
从输入端输入固定的电压,输出变化率真DOO/DT为:IF/C1=-EI/R1.C1(V/S)如果R1=100K,C1=1UF,EI=1V输出变化率真则为1/10的5次方*10的-6次方=-10V/S,即每秒变化10V。
使用积分器应注意:OP放大器的失调电压VOE,输入偏流为IB,失调电流为IOS,无反馈电路RF时,输出可用下式求出:
式中有“~~”的项若出现误差,可增加失调电压VOS或加大带★标记的电阻R2以补偿IOS产生的误差,或者通过降低R1的阻值、加大C1的容量来减少误差。
如图A所示,输入交流信号时,从频率轴可以看出,将FO设定到图中什么位置极为关键,频率低于FC,增益以+6DB/OCT上升,F=0时,增益应为无限大。
要获得不完全的积分特性,可加反馈电阻RF,假定A=-RF/R1,F=1/2πRF.C1,使有内部相们补偿的OP放大器开环频率特性与积分电路的频率特性相同,这样可以保证一定的频率范围内开环增益与频率无关。可以说这是OP放大器应用的最好实例。
元件选择
如果积分时间加长,若把R1的阻值加大,输入电流变小,这时必须选用输入偏听偏信置电流小的产品。如果用该电路产生波形,线性就会变差,应选用绝缘电阻大的薄膜电容。为了进行长时间的积分,OP放大器采用了MOS FET输入IC。为了避免漏电流的影响,须把电路组装成高输入阻抗电路。
基本积分电路
显示全部