数学必须修读Ⅰ北师大版3-4-3对数演示课件.ppt
文本预览下载声明
学习目标 什么是对数? 学会指数和对数互化. 对数的公式有那些? 利用对数的公式计算 预习提纲 对数函数? 对数函数的图象? 对数函数的性质? * * Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 引例:假设1995年我国的国民生产总值为 1亿元, 如每年平均增长8%,那么经过多少年国民 生产总值是1995年的2倍? Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 对数的概念: 一般地,如果a(a0且a?1)的b次幂等于N, 就是a b=N,那么数 b叫做a为底 N的对数, 记作log a N=b,a叫做对数的底数,N叫做真数。 ab=N 底数:a0且a?1 幂:N0 指数:b?R logaN=b 底数:a0且a?1 真数:N0 对数 Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 性质: (1)负数与零没有对数; (2)1的对数是0;即loga1=0 (3)底数的对数是1,即log a a=1 (4) Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 两个特殊对数: 以无理数e(e=2.71828‥‥‥ )为底的对数叫做自然对数,N的自然对数记作lnN. 以10为底的对数叫做常用对数,即N的常用对数记作lgN; Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 指数式与对数式的互化: 例1:将下列指数式写成对数式: (1) 54=625 (2) ; (3)3 a =27 ; (4) . 例2.将下列对数式写成指数式: (1) ; (2) ; (3) ;(4) Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 例3:求下列各式的值: (1)log749=____ (2)lg100=________ (3)log0.351=____ (4) (5)log??=________ (6)lne=_______ (8) (9)log2(sin300)=_______ Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 积、商、幂的对数运算法则: 如果 a 0,a ? 1,M 0, N 0 有: Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. 证明:①设 由对数的定义可以得: ∴MN= 即证得 Evaluation only. Created with Aspose.Slides for .N
显示全部