Classical capacity of bosonic broadcast communication and a new minimum output entropy conj.pdf
文本预览下载声明
a
r
X
i
v
:
0
7
0
6
.3
4
1
6
v
1
[
q
u
a
n
t
-
p
h
]
2
2
J
u
n
2
0
0
7
Classical capacity of bosonic broadcast communication
and a new minimum output entropy conjecture
Saikat Guha, Jeffrey H. Shapiro, and Baris I. Erkmen
Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts 02139 USA
Previous work on the classical information capacities of bosonic channels has established the
capacity of the single-user pure-loss channel, bounded the capacity of the single-user thermal-noise
channel, and bounded the capacity region of the multiple-access channel. The latter is a multi-user
scenario in which several transmitters seek to simultaneously and independently communicate to a
single receiver. We study the capacity region of the bosonic broadcast channel, in which a single
transmitter seeks to simultaneously and independently communicate to two different receivers. It
is known that the tightest available lower bound on the capacity of the single-user thermal-noise
channel is that channel’s capacity if, as conjectured, the minimum von Neumann entropy at the
output of a bosonic channel with additive thermal noise occurs for coherent-state inputs. Evidence
in support of this minimum output entropy conjecture has been accumulated, but a rigorous proof
has not been obtained. In this paper, we propose a new minimum output entropy conjecture that, if
proved to be correct, will establish that the capacity region of the bosonic broadcast channel equals
the inner bound achieved using a coherent-state encoding and optimum detection. We provide some
evidence that supports this new conjecture, but again a full proof is not available.
PACS numbers: 03.67.Hk, 89.70.+c, 42.79.Sz
I. INTRODUCTION
The past decade has seen several advances in evalu-
ating classical information capacities of several impor-
tant quantum communication channels [1]–[5]. Despite
these advances [1], exact capacity results are not known
for many important and prac
显示全部