第六章聚类分析.doc
文本预览下载声明
§3系统聚类法
层次聚类法(Hierarchical Clustering)的计算步骤:
①计算n个样本两两间的距离{dij},记D
②构造n个类,每个类只包含一个样本;
③合并距离最近的两类为一新类;
④计算新类与当前各类的距离;若类的个数等于1,转到5);否则回3);
⑤画聚类图;
⑥决定类的个数和类;
Matlab软件对系统聚类法的实现(调用函数说明):
cluster 从连接输出(linkage)中创建聚类
clusterdata 从数据集合(x)中创建聚类
dendrogram 画系统树状图
linkage 连接数据集中的目标为二元群的层次树
pdist 计算数据集合中两两元素间的距离(向量)
squareform 将距离的输出向量形式定格为矩阵形式
zscore 对数据矩阵 X 进行标准化处理
各种命令解释
⑴ T = clusterdata(X, cutoff)
其中X为数据矩阵,cutoff是创建聚类的临界值。即表示欲分成几类。
以上语句等价与以下几句命令:
Y=pdist(X,’euclid’)
Z=linkage(Y,’single’)
T=cluster(Z,cutoff)
以上三组命令调用灵活,可以自由选择组合方法!
⑵ T = cluster(Z, cutoff)
从逐级聚类树中构造聚类,其中Z是由语句likage产生的(n-1)×3阶矩阵,cutoff是创建聚类的临界值。
⑶ Z = linkage(Y) Z = linkage(Y, method)
创建逐级聚类树,其中Y是由语句pdist产生的n(n-1)/2 阶向量,’method’表示用何方法,默认值是欧氏距离(single)。有’complete’——最长距离法;‘average’——类平均距离;‘centroid’——重心法 ;‘ward‘——递增平方和等。
⑷ Y = pdist(X) Y = pdist(X, metric)
计算数据集X中两两元素间的距离, ‘metric’表示使用特定的方法,有欧氏距离‘euclid’(缺失值) 、标准欧氏距离‘SEuclid’ 、马氏距离‘mahal’、明可夫斯基距离‘Minkowski‘ 等。
⑸ H = dendrogram(Z) H = dendrogram(Z, p)
由likage产生的数据矩阵z画聚类树状图。P是结点数,默认值是30。
2.2举例说明
设某地区有八个观测点的数据,样本距离矩阵如表1所示,根据最短距离法聚类分析。
%最短距离法系统聚类分析
X=[7.90 39.77 8.49 12.94 19.27 11.05 2.04 13.29;
7.68 50.37 11.35 13.3 19.25 14.59 2.75 14.87;
9.42 27.93 8.20 8.14 16.17 9.42 1.55 9.76;
9.16 27.98 9.01 9.32 15.99 9.10 1.82 11.35;
10.06 28.64 10.52 10.05 16.18 8.39 1.96 10.81];
BX=zscore(X); % 标准化数据矩阵
Y=pdist(X) % 用欧氏距离计算两两之间的距离
D=squareform(Y) % 欧氏距离矩阵
Z = linkage(Y) % 最短距离法
T = cluster(Z,3) %等价于 { T=clusterdata(X,3) }
find(T==3) % 第3类集合中的元素
[H,T]=dendrogram(Z) % 画聚类图
例6.4.1
x=[190.33 43.77 9.73 60.54 49.01 9.04;135.2 36.4 10.47 44.16 36.49 3.94;95.21 22.83 9.3 22.44 22.81 2.8;104.78 25.11 6.4 9.89 18.17 3.25;128.41 27.63 8.94 12.58 23.99 3.27;145.68 32.83 17.79 27.29 39.09 3.47;159.37 33.38 18.37 11.81 25.29 5.22;116.22 29.57 13.24 13.76 21.75 6.04;221.11 38.6
显示全部