工程力学 静力学与材料力学 教学课件 作者 王永廉 10扭转.ppt
文本预览下载声明
* * 第十章 扭转 第一节 引 言 受力特点: 扭转变形 —— 变形特点: 受外力偶作用,外力偶的作用面垂直于杆的轴线。 杆的横截面绕轴线作相对转动。 主要承受扭转变形的杆称为轴 材料力学主要讨论圆轴的扭转 第二节 外力偶矩的计算·扭矩与扭矩图 一、扭转圆轴横截面上的内力 一个位于横截面内的内力偶,该内力偶的矩称为扭矩,记作 T , 其正负号按右手螺旋法则确定。 扭矩图: 表达扭矩随横截面位置变化规律的图线 [例1] 图示传动轴,已知主动轮上的转矩 MeC = 300 N·m、从动轮上的阻力偶矩 MeA = 50 N·m、MeB = 100 N·m、MeD = 150 N·m,试作出该传动轴的扭矩图。 解: 二、外力偶矩与功率、转速之间的换算关系 式中,P 为功率,以 kW 计; n 为转速,以 r/min 计; Me 为外力偶矩,以 N·m 计。 第三节 扭转圆轴横截面上的应力 基本结论: 一、薄壁圆管扭转时横截面上切应力的近似计算公式 薄壁圆管: 其中,? 为壁厚、R 为平均半径。 薄壁圆管扭转时横截面上切应力的近似计算公式 圆轴扭转时横截面上只存在切应力 二、圆轴扭转时横截面上切应力的计算公式 式中,T 为横截面上的扭矩; ? 为点至圆心的距离; ,称为圆截面对圆心的极惯性矩。 对于圆: 对于圆环: (? = d / D,为内外径比) 三、最大扭转切应力 圆轴扭转时,在横截面边缘各点 处,切应力取得最大值,其计算 公式为 式中, ,称为抗扭截面系数。 对于圆: 对于圆环: ( ? = d / D,? 为内外径比) 第四节 扭转圆轴的强度计算 扭转圆轴的强度条件 —— 式中,[ ? ] 为许用扭转切应力。 [例2] 图示阶梯轴,已知 AB 段直径 d1 = 80 mm 、BC 段直径 d2 = 50 mm ;外力偶矩 M1 = 5 kN·m、M2 = 3.2 kN·m 、M3 = 1.8 kN·m ;材料的许用扭转切应力 [? ] = 60 MPa ,试校核该轴强度。 解: AB段: BC 段: 1)作扭矩图 2)校核强度 AB 段: BC 段: 由于 所以,该阶梯轴的强度不符合要求。 [例3] 如图,某汽车传动主轴由无缝钢管制成。已知轴的外径 D = 90 mm,壁厚 ? = 2.5 mm ,工作时所承受的最大外力偶矩 Me = 1.5 kN·m ,材料为 45 钢,许用扭转切应力 [? ] = 60 MPa ,试校核此轴强度。 解: 2)计算抗扭截面系数 1)计算扭矩 故该轴强度符合要求 3)校核轴的强度 [例4] 如把上例中的传动轴改为实心轴,要求它与原来的空心轴强度相同,试确定其直径,并比较实心轴和空心轴的重量。 由于 T 、[? ] 不变,故要求两 轴强度相同,只需其抗扭截 面系数 Wt 相等,即有 解: 解得实心轴直径 1)确定实心轴直径 D1 实心轴横截面面积 2)比较实心轴与空心轴的重量 空心轴横截面面积 在两轴长度相等、材料相同的情况下,两轴重量之比就等于横截 面面积之比,故得 ◆ 空心轴用料仅为实心轴的 31% ,为什么? 第五节 扭转圆轴的变形与刚度计算 一、切应变与剪切胡克定律 1. 切应变 在切应力作用下,单元 体直角的改变量称为切 应变,记作 ? 。 2. 剪切胡克定律 说明: 2)弹性常数 E、G、? 之间满足关系式 1)G 为材料的弹性常数,称为切变模量, 单位为 Pa 。对于钢材,G = 80 GPa 。 二、扭转圆轴的变形·扭转角的计算 单位长度扭转角 dx 微段的扭转角 相距为 l 两截面间的扭转角 ,则有 若 说明: 2)扭转角? 的正负号与扭矩 T 一致; 3)在国际单位制中,? 的单位为 rad、?′的单位为 rad/m。 1)GIp 称为杆件的抗扭刚度; 三、扭转圆轴的刚度条件 刚度条件: 扭转圆轴的刚度条件: 注意:刚度条件中不等式两边的单位应统一。 式中,[ ?′]为轴的许用单位长度扭转角。 对变形的限制条件 * *
显示全部