北京邮电大学高等数学7–3.ppt
文本预览下载声明
一、向量在轴上的投影与投影定理 二、向量在坐标轴上的分向量与向量 三、向量的模与方向余弦的坐标表示式 四、小结 * 证 于是 空间两向量的夹角的概念: 类似地,可定义向量与一轴或空间两轴的夹角. 特殊地,当两个向量中有一个零向量时,规定它们的夹角可在0与 之间任意取值. 空间一点在轴上的投影 空间一向量在轴上的投影 关于向量的投影定理(1) 证 定理1的说明: 投影为正; 投影为负; 投影为零; (4) 相等向量在同一轴上投影相等; 关于向量的投影定理(2) (可推广到有限多个) 的坐标 由例1知 向量在 轴上的投影 向量在 轴上的投影 向量在 轴上的投影 按基本单位向量的坐标分解式: 在三个坐标轴上的分向量: 向量的坐标: 向量的坐标表达式: 特殊地: 向量的加减法、向量与数的乘法运算的坐标表达式 解 设 为直线上的点, 由题意知: 非零向量 的方向角: 非零向量与三条坐标轴的正向的夹角称为方向角. 由图分析可知 向量的方向余弦 方向余弦通常用来表示向量的方向. 向量模长的坐标表示式 当 时, 向量方向余弦的坐标表示式 方向余弦的特征 特殊地:单位向量的方向余弦为 解 所求向量有两个,一个与 同向,一个反向 或 解
显示全部